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STOCHASTIC ANALYSIS OF PARTICLE 

MOVEMENT OVER A DUNE BED

By BAUM K. LEE and HARVEY E. JOBSON

ABSTRACT

Stochastic models are available that can be used to predict the 
transport and dispersion of bed-material sediment particles in an 
alluvial channel. These models are based on the proposition that the 
movement of a single bed-material sediment particle consists of a 
series of steps of random length separated by rest periods of random 
duration and, therefore, application of the models requires a 
knowledge of the probability distributions of the step lengths, the 
rest periods, the elevation of particle deposition, and the elevation of 
particle erosion. In the past, it has proven impossible to estimate 
these distributions except by use of tedious and time-consuming 
single particle experiments.

By considering a dune bed configuration which is composed of 
uniformly sized particles, the probability distributions of the rest 
period, the elevation of particle deposition, and the elevation of parti­ 
cle erosion are obtained from a record of the bed elevation at a fixed 
point as a continuous function of time. By restricting attention to a 
coarse sand, where the suspended load is negligible, the probability 
distribution of the step length is obtained from a series of "instan­ 
taneous" longitudinal bed profiles in addition to the above informa­ 
tion. Using these probability distributions, three bed-material 
transport equations and a two-dimensional stochastic model for dis­ 
persion of bed-sediment particles are developed.

The procedure was tested by determining these distributions from 
bed profiles formed in a large laboratory flume with a coarse sand as 
the bed material. The elevation of particle deposition and the eleva­ 
tion of particle erosion can be considered to be identically dis­ 
tributed, and their distribution can be described by either a "trun­ 
cated Gaussian" or a "triangular" density function. The conditional 
probability distribution of the rest period given the elevation of parti­ 
cle deposition closely followed the two-parameter gamma distribu­ 
tion. The conditional probability distribution of the step length given 
the elevation of particle erosion and the elevation of particle deposi­ 
tion also closely followed the two-parameter gamma density function. 
For a given flow, the scale and shape parameters describing the gam­ 
ma probability distributions can be expressed as functions of bed 
elevation.

The bed-material transport equations were tested for three flow 
conditions. The errors in the predicted mean total bed-material 
transport rates were -3.0, +3.5, and 80.1 percent for equation 55, 
and -1.7, +26.9, and +64.1 percent for equation 63. For the run with 
the large error, the mean total load concentration was small 
(8.9 milligrams per liter), and flow conditions were somewhat out of 
equilibrium.

INTRODUCTION
The movement of sediment in alluvial streams is so 

complex a process that it may never be subjected com­ 
pletely to a deterministic solution. It represents, in fact, 
an extreme degree of unsteady, nonuniform flow, since 
the streambed as well as the water surface may be con­ 
tinuously changing with time and position.

Numerous formulas and equations have been 
developed to predict sediment transport rates. Most of 
these developments ignore the actual nature of sedi­ 
ment movement and have assumed that the sediment 
transport rate can be described by a deterministic func­ 
tion of certain flow parameters. Unfortunately, after 
decades of searching, no universally accepted sediment 
transport equation has been found. The theories of 
probability, statistics, and stochastic processes have 
been used to describe the kinematics of a single bed- 
sediment particle in an alluvial channel flow and to pre­ 
dict the dispersion characteristics of a group of such 
particles. These theories have clearly demonstrated a 
great potential for development of stochastic models of 
sediment transport and dispersion.

Most of the stochastic models (Shen and Todorovic, 
1971; Grigg, 1969; Yang, 1968; Sayre and Conover, 
1967; Hubbell and Sayre, 1964; Crickmore and Lean, 
1962; Einstein, 1937) are based on the proposition that 
the movement of bed-sediment particles consists of a 
series of steps separated by rest periods, so that deter­ 
mination of the probability distributions for the step 
lengths and the rest periods of a bed-sediment particle 
plays the major role in quantifying the bed-sediment 
transport. While this movement concept can easily be 
verified through laboratory observations, Einstein 
(1937) was the first to use it. He developed a one-dimen­ 
sional probabilistic model for bedload transport. More 
recently, Sayre and Conover (1967) derived a two- 
dimensional stochastic model by introducing the prob-
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ability distribution of the elevation at which a bed-sedi­ 
ment particle is deposited.

The probability distributions of the step lengths and 
the rest periods of a bed-sediment particle have been 
estimated from single particle experiments (Grigg, 
1969) or by using a group of tracer particles (Yang, 
1968; Hubbell and Sayre, 1964; Crickmore and Lean, 
1962). Because of the considerable effort required to 
conduct such experiments, it seems clear that some way 
must be found to estimate the probability distributions 
from more readily accessible data if significant further 
progress is to be expected. To apply the Sayre-Conover 
(1967) two-dimensional stochastic model, the prob­ 
ability distribution of the elevation at which a bed-sedi­ 
ment particle is deposited must be known. A method for 
estimating this distribution is developed in this report.

The objectives of this study are:

1. To present a method of estimating the following 
probability distributions for dune-bed conditions using 
only sounding records of the bed elevation   (a) prob­ 
ability distributions (note that there are two separate 
distributions) of the elevation at which a bed-sediment 
particle is eroded and deposited, and (b) conditional 
probability distributions of the step lengths of a bed- 
sediment particle given the elevations at which the par­ 
ticle is eroded and deposited. A method estimating the 
conditional probability distribution of the rest periods 
of a bed-sediment particle given the elevation at which 
the particle is deposited has been presented by Sayre 
and Conover (1967).

2. To develop bed-material transport equations based 
on the above probability distributions and to compare 
the results with the experimentally measured values.

3. To derive a two-dimensional stochastic model for 
dispersion of bed-sediment particles as a function of the 
above probability distributions.

The probability distributions of the elevation at 
which a bed-sediment particle is eroded and deposited, 
and the probability distribution of the rest periods, con­ 
ditioned on the elevation of deposition, will be obtained 
from a continuous record of the bed elevation at a par­ 
ticular point as a function of time. The probability dis­ 
tribution of the step lengths, conditioned on the eleva­ 
tion of erosion and the elevation of deposition, will be 
obtained from a series of "instantaneous" longitudinal 
bed profiles. With these distributions obtained, various 
related probability distributions of vital interest will be 
estimated, and a relation between the rest periods and 
the step lengths of a bed-sediment particle will be in­ 
vestigated.

Three experimental runs are analyzed and the rela­ 
tions between the statistics describing the postulated 
probability distributions and the hydraulic conditions 
are investigated. All data were obtained from a tilting

recirculating flume of rectangular cross section 61 m 
long, 2.4 m wide, and 1.2 m deep. The bed material used 
in these experiments was screened river sand with a 
median sieve diameter equal to 1.13 mm and a 
geometric standard deviation equal to 1.51.
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BACKGROUND
THEORETICAL MODELS

Einstein (1937) treated the movement of a single 
sediment particle over an alluvial bed as a stochastic 
process described by an alternating sequence of two in­ 
dependent random variables, namely, step lengths and 
rest periods. Considering the particle movement in the 
distance-time plane on a Galton's board (Parzen, 1960), 
Einstein derived exponential probability density func­ 
tions for the step lengths and the rest periods,

and

fx (x) = k.

fT (t) =

,
x>0

-kt
e , t > 0

(1)

(2)

respectively, where

X,T = random variables describing the step 
lengths and rest periods of a parti­ 
cle, respectively;

x,t = distance and time, respectively; 
fx (x),fT (t) = common probability density functions 

of the step lengths and rest periods, 
respectively; and 

&i» ^2 = positive constants.

For a sediment particle introduced into the stream at 
distance x = 0 in such a way that it takes its first step at 
time t = 0, Einstein obtained the probability density 
function of the total distance traveled by the particle at 
time t to be

f(x; t) =
-k x - k~t n - 1 (kz t) n - 1

x> 0, t> 0 , (3)

in which F(«) denotes the gamma function. Equation 3 
also represents the concentration distribution of a 
group of identical sediment particles with respect to
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longitudinal position, x, as a function of time, t.
The probability density function for the case when 

the particle is initially (t = 0) at rest at x = 0 also was 
obtained by a similar procedure,

f(x; t) =
-k,x -

E
n= 1

T(n + 1)

x> 0, t> 0 (4)

It should be noted that equation 4 applies only to the 
particle that has taken at least one step.

Einstein (1950) also developed his well-known bed- 
load equation by considering the dynamic lift force as a 
random variable. The idea is that the probability of a 
sediment particle being eroded from the bed surface is 
equal to the probability that the lift force exerted on the 
particle exceeds its submerged weight. He obtained

B V -   
*-" it it Y1r ^op = z dz = (5)

where
p = probability of a sediment particle being

eroded; 
Tjo^j-B* = constants;

^ * = intensity of shear for an individual particle
size; and

<£* = intensity of transport for an individual par­ 
ticle size.

Solving equation 5 for <!> ,, which is a function of the bed- 
load transport rate, one obtains the bed-load discharge 
for individual particle sizes from hydraulic parameters 
and sediment properties.

Hubbell and Sayre (1964) presented a one-dimen­ 
sional stochastic model for the longitudinal dispersion 
of bed-material particles in an alluvial channel. The 
results are identical to Einstein's (eqs. 1-4). The 
assumptions are: (1) the flow is in equilibrium (Simons 
and Richardson, 1966); (2) the particle always moves 
in a downstream direction with a series of alternate 
steps and rests; (3) the duration of movement is insig­ 
nificant compared to the rest periods; and (4) the 
stochastic processes describing the number of steps 
taken by a particle in a distance interval and a time in­ 
terval are independent of each other and both are 
homogeneous Poisson processes (Parzen, 1967). These 
assumptions are essentially the same as those of Ein­ 
stein's (1937) although stated in a different way.

Based on the concept of continuity, Hubbell and 
Sayre (1964) proposed the transport equation for the 
bed material of a certain characteristic,

(6)

where
QT = bed-material discharge in weight per unit time; 

ic = ratio of the volume of particles possessing the 
characteristic size to the volume of bed- 
material particles in the zone of particle move­ 
ment;

ys = specific weight of the bed material; 
9 = bulk porosity of the bed in place; 
W= width of channel; 
h = average depth of the zone in which particle

movement occurs; 
x = average distance traveled by bed material in

time t;
t = measure of time; and
c = subscript that denotes terms associated with 

particles possessing a certain characteristic 
size.

Combining equation 6 with the result from the Hubbell- 
Sayre one-dimensional stochastic model gives the total 
bed-material discharge for all particle sizes,

(7)

in which ^ and k2 are defined in equations 1 and 2, 
respectively.

Sayre and Conover (1967) extended the one-dimen­ 
sional stochastic model derived by Hubbell and Sayre 
(1964) to two dimensions by introducing the vertical 
level at which particles are deposited. Their analysis led 
to the joint probability density function for the event 
that a particle has, at time t, traveled a distance equal 
to AC and is located at an elevation equal to y,

f(x,y,t)

(n) t (n)

,n = 1
t -

, (8)

where
fy D(y) = probability density function for the 

(n} (n) elevation of particle deposition; 
fx (x),fT (t) = rc-fold convolutions of fx(x) and fT (t),

respectively;
fr\Y (* \v) = conditional probability density function 

for the rest periods given the eleva­ 
tion at which the particle is 
deposited; and

t' = sum of the first n rest periods.
If a group of identical sediment particles are released 
simultaneously at jc = 0, v = v0, and t = 0, equation 8 
gives the concentration of the particles, which were in­ 
itially at rest and have moved from their respective in­ 
itial positions, with respect to longitudinal position, jc, 
and vertical position, v, as a function of time, t.
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In order to apply equation 8, the density functions, 
fyD(y)> fr\ YD(t \^)> a11^ fx (*) must be specified. The un­ 
conditional density function, fT (£) is related to 
fr\ Y (t \y) and fy (y) by the relation

max

min D D
(y)dy (9)

in which ymax and ^min are the highest and lowest eleva­ 
tions at which particles can be deposited, respectively. 
The marginal case of equation 8 is

f(x; t) =
(n)

n = 1

(n)
dt

(n)
fx (x) P[N(t) =n], (10)

n=

in which P[N(t) = n] denotes the probability that a par­ 
ticle takes n steps in a time interval t. Equation 10 is a 
general one -dimensional stochastic model where only 
longitudinal dispersion is considered. One may note 
that the substitution of equations 1 and 2 into equation 
10 reduces to equation 4.

Yang (1968) assumed the step lengths are gamma 
distributed with a shape parameter, r, and the common 
density function,

r- 1 L
~kx

x>0 (11)

and the rest periods are exponentially distributed with 
the common density function given in equation 2. 
Substituting equations 2 and 11 into equation 10, he ob­ 
tained

f(x;t) =
~ k lx ~ k2 l

p ^L* i
nr ~ l (k2 t) n

n = 1
T(nr) F(n + 1) '

x > 0, t > 0 . (12)

Since the gamma distribution reduces to the exponen­ 
tial distribution when r = 1, equation 4 is actually a 
special case of equation 12.

Shen and Todorovic (1971) generalized the Hubbell- 
Sayre one-dimensional model given in equations 1, 2, 
and 4. The essential difference between the two models 
is that the former was based on the nonhomogeneous 
Poisson processes (Parzen, 1967), while the latter was 
based on the homogeneous Poisson processes. In the 
Shen-Todorovic model, the probability density func­ 
tions of the step lengths and the rest periods are, 
respectively,

-f fc,(s)dsl

fx (x) = fc 1 (x) e , x > 0 , (13)

and

-f k2 (s)ds 

fT (t) =k2 (t) e ° , t>0 , (14)

where
k^x), k2 (t) = functions of xand t, respectively; and 

XQ, tQ = initial position and time, respectively. 
The probability density function of the total travel dis­ 
tance of a particle, which was initially at rest and has 
moved from its initial position, XQ, was found to be

x t 
- J k l (s)ds - J k2 (s)ds

x.
f(x; t) = k (x) e

[
x -in - 1 r t

f k l (s)ds\ J fc2 (s)ds|
xn J L *Q J

(n) T(n+ 1)

(15)

, x > 0, t > 0 .

n=

It is seen from equations 13 and 14 that the mean num­ 
ber of steps taken by a particle in (XQ , x] and (tQ , t] are

fxk,(s)dsand f k2 (s)ds,
JXn "In

respectively, whereas those of Hubbell-Sayre's model 
are ^(X-XQ) and k2(t-tQ), respectively. The Hubbell- 
Sayre (1964) one-dimensional model is a special case of 
the Shen-Todorovic model.

EXPERIMENTAL STUDIES

Hubbell and Sayre (1964) conducted concentration 
distribution experiments both in the field and laborato­ 
ry to evaluate the one-dimensional stochastic model 
given by equation 4. The bed configurations in these ex­ 
periments were large dunes in the field and ripples in 
the laboratory flume. Using radioactive tracer parti­ 
cles, a series of longitudinal concentration-distribution 
curves were obtained at different times for a given flow 
condition. The longitudinal concentration-distribution 
function, <&(x;t), is defined to be the weight of tracer 
particles per unit volume of bed material as a function 
of longitudinal distance and time and is related to fix; f)
by

w
= f(x:t) (16)

in which WT is the total weight of the tracer particles 
placed in the channel, W is the channel width, h is
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average depth of the zone of bed material movement, 
and f(x\t) is given by equation 4. Based on equation 16, 
the parameters k^ and k2 were estimated. With these 
estimates, Hubbell and Sayre reported that the 
theoretical and observed concentration-distribution 
functions agree reasonably well.

Yang (1968) carried out a set of experiments using 
radioactive tracer particles to verify the model given by 
equation 12. Experiments were performed with ripple 
and dune bed conditions in a laboratory flume O.H m 
wide by 18.3 m long. He reported that the shape of the 
experimental longitudinal dispersion curves are fairly 
well represented by equation 12. Yang also made 
preliminary runs with a single plastic particle in a 
small flume and found that the step lengths very closely 
follow a gamma distribution with the parameter r ap­ 
proximately equal to 2 and that the rest periods follow 
an exponential distribution very closely.

The first intensive experimental study on the move­ 
ment of single particles was done by Grigg (1969). The 
experiments were conducted in a laboratory flume with 
two bed material sizes. The bed configurations were rip­ 
ples and dunes. Using single radioactive tracer parti­ 
cles, he measured the step lengths and the rest periods 
directly and found the step lengths to be approximately 
gamma distributed and the rest periods to be approx­ 
imately exponentially distributed as proposed by Yang.

Grigg found interesting correlations between: (1) 
Various properties of the step length distribution, the 
stream power (product of mean bed shear stress and 
mean flow velocity), and the distribution of bedform 
lengths; and (2) various properties of the rest period 
distribution and statistical properties derived from the 
variation of bed elevation with respect to time.

Based on an idea suggested by Hubbell and Sayre 
(1965), Grigg also made some progress toward experi­ 
mentally testing the Sayre-Conover two-dimensional 
stochastic model. By analyzing a record of the bed 
elevation as a function of time, he showed that the con­ 
ditional probability density function of the rest periods 
can be approximated by the exponential function,

?T\Y c\y) =
x D

and

(17)

(18)

in which a and /3 are constants and y measures bed 
elevation in terms of the standard deviation about 
mean bed elevation.

REMARKS
Based on the review given in the previous sections, 

the following remarks are offered.

1. The Sayre-Conover model given by equation 10 is 
the most general one-dimensional model. The rest of 
the one-dimensional models, which were previously dis­ 
cussed, can be obtained from this model by proper 
substitutions. Therefore, it may be rated as the best ex­ 
isting one-dimensional model.

2. The Sayre-Conover model given by equation 8 is 
the only existing two-dimensional stochastic model. 
The derivation of the Sayre-Conover model has been 
discussed by Lee (1973). To verify equation 8, a method 
of estimating the probability distribution of the eleva­ 
tion at which particles are deposited must be known. 
One of the purposes of this report is to present such a 
method.

3. In order for the stochastic model to serve a predic­ 
tion purpose, the relation between flow conditions and 
the parameters describing the probability distributions 
must be known. Without such knowledge the stochastic 
models cannot contribute much to the prediction 
problem.

4. A great deal of effort is required to perform disper­ 
sion and single particle experiments. If another method 
can be developed to estimate the necessary probability 
distributions from more readily accessible data, con­ 
siderable savings would result. The methods developed 
in this report require only records of bed elevation.

DEVELOPMENT OF THEORY

CHARACTERISTICS OF PARTICLE MOVEMENT 
OVER A DUNE BED

Dunes are one of the most common bed forms in 
alluvial channels. Field observations by Simons and 
Richardson (1966) indicated that dunes may form in 
any alluvial channel, irrespective of the size of bed 
material, if the stream power is sufficiently large to 
cause general transport of the bed material without ex­ 
ceeding a Froude number of unity. The longitudinal 
profile of a dune is approximately triangular in shape 
with a gentle upstream slope and steep downstream 
slope. The upstream slope depends somewhat on flow 
conditions, whereas the downstream slope is more de­ 
pendent on the angle of repose of the bed material. The 
length of a dune ranges from about 0.61 m to several 
hundred meters, depending on the scale of the flow 
system. The Chezy discharge coefficient, Cl-Jg, ranges 
from 8 to 12, and the total bed-material discharge con­ 
centration ranges from 100 to 1,200 milligrams per liter 
for dune flow conditions. For further information 
readers may refer to Simons and Richardson (1966).

For dune flow conditions, a record of the bed eleva­ 
tion as a function of time at a particular location 
reveals an alternating sequence of periods during 
which either erosion or deposition is occurring. This
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type of record is commonly obtained from the output of 
a depth sounder which is at a fixed location and 
hereafter will be referred to as the yx(t) record, that is, 
the elevation of the bed, y, positive upward, as a func­ 
tion of time, t, at a fixed location, x. When deposition oc­ 
curs, [dyx(t)/dt] >0, and when erosion occurs, 
[dyx (f)/df\ < 0, provided these derivatives exist. An in­ 
stantaneous longitudinal bed profile may be charac­ 
terized by an alternating series of erosion and deposi­ 
tion reaches. An instantaneous longitudinal profile can 
be obtained by mounting a depth sounder in a boat, pro­ 
vided that the speed of the boat is large relative to the 
speed of bed forms. These bed profiles will hereafter be 
referred to as the yt(x) records, that is, the elevation of 
the bed, y, positive upward, as a function of the 
longitudinal coordinates, x, at a given time, t. The 
longitudinal coordinate will be assumed to increase in 
the downstream direction; therefore, the reaches with 
positive slopes, [dyt(x)/dx]>0, represent the upstream 
or stoss sides of the dunes, and the reaches with nega­ 
tive slopes, [dyt(x)/dx]<0, represent the downstream or 
slip faces of the dunes. The dune crest is defined by a 
local maximum in the yt(x) record, and the dune trough 
is defined by a local minimum in the record.

Anyone who has an opportunity to observe closely the 
movement of sediment is aware that dunes move 
downstream owing to erosion from their, upstream face 
and deposition on their downstream face. That is, the 
bed forms migrate downstream because deposition oc­ 
curs on the downstream face, where [dyt(x)/dx] <0, and 
erosion occurs on the upstream face, where 
[dyt (x)/dx] >0. It will be assumed throughout this report 
that no deposition occurs on the upstream sides of 
dunes and no erosion occurs on the downstream faces of 
dunes. This assumption is not strictly true physically 
but is necessary for the determination of the condi­ 
tional step length distributions. If the assumption is 
true, each sediment particle on the stoss side of a dune 
must make a step in the downstream direction before it 
is deposited on the slip face of any dune. Once deposited 
it rests there until the dune has migrated downstream 
and it becomes reexposed on the stoss side. In other 
words, sediment particles are transported downstream 
in an alternating sequence of steps and rests of random 
length and duration. The frequencies and magnitudes 
of these steps and rests are of basic interest in under­ 
standing the nature of the movement of the sediments.

Because particles must be eroded from and deposited 
on the surface of the bed, the step length of a particular 
particle depends only on the elevation from which it is 
eroded, the elevation at which it is deposited, the num­ 
ber of dune crests which it passes before being 
deposited, and the scale and shape of the bed surface 
(yt (x) record) during the time of its movement. Likewise

the rest period of a particular particle depends on the 
scale and shape of the yx(t) record and on the elevation 
at which the particle is deposited. If the bed material 
size is not uniform, the elevation of deposition or ero­ 
sion may also depend on the size of particles because of 
vertical sorting.

The intimate relationship between the bed-form 
shape, as measured by the yx(t) and yt(x) records, and 
the step lengths and rest periods of a bed-material par­ 
ticle allow the probability distributions of the step 
lengths and the rest periods to be estimated from the 
bed-form data. In the following three sections, a method 
of estimating the probability distributions of the rest 
periods, step lengths, and elevations at which a particle 
is deposited or eroded using the yx(t) and yt(x) records 
will be presented. In the last two sections the bed- 
material transport equations and a general two-dimen­ 
sional bed-material dispersion equation will be derived 
as functions of these probability distributions. In the 
next chapter the transport equations will be tested 
using data from three flume runs and the results will be 
discussed.

ESTIMATION OF THE PROBABILITY DISTRIBUTIONS OF 
THE ELEVATIONS OF DEPOSITION AND EROSION

The probability that particles are deposited between 
the elevations 17and 17 may be written as

( number of particles deposited 
within the interval (T^., i]. + ^ in time t ^ 

number of particles deposited 
over all intervals in time t

where
P [ ] = probability; 

YD = random variable describing the elevations at
which particles are deposited;

17,, 17,+ i = lower and upper class limits associated with 
the class mark of the elevation yJ9 respec­ 
tively; and 

t = time during which the observations were
made.

The elevation at which particles are deposited will 
hereafter simply be referred to as the elevation of 
deposition, YD .

If the number of particles per unit volume of the bed, 
O, is constant, the flow is stationary (statistical sense), 
and both erosion and deposition cannot occur at the 
same point at the same time, the numerator and the 
denominator of equation 19 can be obtained from the 
yx(t) record. The total number of particles deposited per 
unit area within the class interval (17^, 17^+1] in time t, 
denoted by Nd(yj) is given by
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m. 
]

= 1,2, .... n , (20)

k = 1

where

n —

m =

class mark for the realization of YD ;
number of class intervals for the realization of

YD ; 
vertical rise of the bed in the class interval

associated with yj for the kth deposition
period; and 

maximum number of bed forms contained in
the yx (t) record and which also contain some
deposition in the class interval associated
with .

Figure I illustrates the class marks, ^ , and the verti­ 
cal rise of the bed, Ay*fe , within the class intervals, 
Aty, for a typical yx(f) record. It is clear that 
Aj^^l A;yy = T7y+1 -17,. The total number of particles 
per unit area deposited over all intervals, the 
denominator of equation 19, is designated by Nd and is 
obtained by summing equation 20 over all class 
marks:

Nd= _

j = 1 j = 1 k = I

Equation 19 now becomes

(21)

m.

lim
m. -» 

k = 1 . (22)

j = 1 k = 1

Similarly an analysis of the erosion periods 
to estimate the probability that particles 
between the elevations 7) ; and 7), +1 ,

can be used 
are eroded

m'.

k = 1
m i , (23)

where
at

e
YE = random variable describing the elevations

which particles are eroded; 
yi = class mark for the realization of YE ; 

,ri i+ i = lower and upper class limits of yt , respec­ 
tively;

y.(t)

Typical deposition 
period

FIGURE 1.   Typical y (t) record illustrating the class marks for deposition and erosion.
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m- = maximum number of bed forms contained in 
the yx(t) record and which also contain 
some erosion in the class interval associ­ 
ated with y,;

Ne(yt) = total number of particles per unit area 
eroded from the interval (TJ,-, TJH-I] cen­ 
tered at Ji ; 

Ne — total number of particles per unit area
eroded over all intervals; 

n = number of class intervals for YE ; and 
&y~i~k = amount of erosion which occurred during the 

kth erosion period in the vertical class in­ 
terval associated with yt (fig. 1).

In the limit as m^-and m- approach infinity for a station­ 
ary record, the distributions of P[f)j < YD ^ T)J+I] and 
P[rj ( < YE ^ T?H-I] must be identical. The elevation at 
which particles are eroded will hereafter simply be 
referred to as the elevation of erosion, YE .

To repeat, the following assumptions are necessary 
for equations 22 and 23 to be valid: (1) Flow is in 
equilibrium such that both deposition and erosion proc­ 
esses are stationary with respect to time t; (2) both ero­ 
sion and deposition do not occur at the same point dur­ 
ing the same time period; and (3) the number of parti­ 
cles per unit volume of the bed is constant.

If the measuring equipment were sensitive enough 
to detect the movement of single particles, the second 
assumption would not be necessary because it would 
be physically impossible for one particle to be eroded 
and another to be deposited at the same point and at 
the same time. For yx(t) records obtained from less 
sensitive equipment, of course, the assumption may 
not be strictly true. When the bed material is not 
uniform in size, equations 20 through 2-3 are not 
strictly true because the number of particles per unit 
volume of the bed, O, is a function of elevation due to 
a vertical sorting. However, equations 22 and 23 
should serve as first approximations to the true prob­ 
abilities, P[-r)j<YD ^7)J+l } and P[rj, < YE ^ TJ ;+I], 
even for the nonuniform bed material.

If the number of particles per unit volume were 
known as a function of elevation, y, assumption (3) 
could be dropped. In this case, the counterpart of equa­ 
tion 22 is

m. 
]

Ay+ 
y

lim
m. -* 

k = 1
m. (24)

J E **>,
j = 1 k = 1

in which fty is the number of particles per unit volume 
of the bed associated with 3^. The counterpart of equa­ 
tion 23 would be similar. The value of Oy could be ob­ 
tained from core-sample segments taken from 
different elevations within the bed. In the next sec­ 
tion, H will be assumed to be a constant in estimation 
of Pty < YD ^-r)j+1] and Pfo <YE ^ t) i+1]. Because 
the bed material was very uniform in size, however, 
the assumption should have been very good.

Equations 22 and 23 are estimated by use of the 
sample probability mass functions which are defined 
to be

Nd (y,)

- P[r\. < YD < r] ^ for a large m , (25)

and

P Y (y t )
E l

(y-)VJ

N

I P[TJ. < Y,, < T]. , ,] for a large m, , (26)
t Ci ~~" I "* J. t

in which PY (yj) is used to estimate equation 22 and 
PyE(yt} is used to estimate equation 23. Estimates of 
the mean and variance of the elevation of deposition 
are respectively

n ~

D J <*,.)

and 27)

D

in which E [ ] and Var [ ] denote estimates of the ex­ 
pected value and variance, respectively. Replacing the 
D's with E's and the j's"with i's in equation 27 gives the 
estimates for the mean and variance of the elevation of 
erosion.

The probability density functions for the elevations 
of deposition and erosion [fyD(y) and fy(y)] may be 
inferred from the probability mass functions [Pyjiyi) 
and PyE(yi)] by means of a statistical fitting pro­ 
cedure. This will be discussed later.

ESTIMATION OF THE PROBABILITY DISTRIBUTIONS 

OF THE REST PERIODS

In this study the rest period of a particle is defined 
as the time lapse between the burial and reexposure of
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the particle. This definition is consistent with the 
assumption that erosion and deposition do not occur at 
the same point during the same time period, and it is 
also necessary in analyzing single particle measure­ 
ments because the measurement techniques cannot 
detect momentary rests by the particle. Using the 
burial definition, the yx(t) record provides a means of 
estimating the probability density functions of particle 
rest periods conditioned on the elevations of deposi­ 
tion. The method is illustrated schematically in figure 
2, where the statistic {^ ; j = I, 2, . . ., n; k = 1, 2, . . ., 
rrijj Jmeasures the conditional rest period, the index k 
signifies a particular bed form. The term ra^ desig­ 
nates the maximum number of bed forms which are 
contained in the yx (t) record and which also contain 
both an up -crossing and a down -crossing at the eleva­ 
tion y-. This use of the yx(t) record was first suggested 
by Hubbell and Sayre (1965) and was partly evaluated 
by Grigg (1969).

A relative frequency analysis of the statistic {tj k } 
leads to a sample conditional probability mass function 
of the rest periods which is defined to be

D

j = 1 , 2 , . . . , n; a = 1 , 2 , . . . , r , (28)

T = random variable describing the rest 
periods;

where

ta , yj = class marks for Tand YD , respectively; 
r a , r a+l = lower and upper class limits of ta , respec­ 

tively; and 
r = number of class intervals for T.

Equation 25 can be used to release the condition on 
equation 28 and to obtain the marginal sample prob­ 
ability mass function for the rest periods,

J = 1
a = l,2, ..., r . (29)

From equations 28 and 29 the corresponding prob­ 
ability density functions for the conditional rest 
periods, fT\ Y (t\y), and for the marginal rest periods, 
fT (t), may be approximated by means of a statistical fit­ 
ting procedure.

The mean and variance of the conditional rest 
periods are estimated from the sample moments

m.. . 
J.J

and
= 1

Vai

1
m. .

J.J

•[T\YD = y.]

m. . 
J.JE V 2

k = 1

m. .
j ' j

h E ;.*

>(30)

TIME OF RE-EXPOSURE 
AND MOVEMENT

FIGURE 2.   Typical y (t) record illustrating the conditional rest periods of a particle.
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Estimates of the mean and variance of the marginal 
rest periods are respectively

E(T } =

and

Var[T] = E[T2 ] - (E[T]) 2 ,

(31)

in which

E[T

m. .
j * i— r (t--, t  i

k = I D

The joint probability density function of T and YD , 
denoted by /^y (£,,y) is estimated from the sample joint 
probability mass function defined to be

P T y ^a' y ^ = P ^a < T - la + I' ^' < YD -^' + 1^' ^32 ^

where J = 1, 2,..., n and a = 1, 2, .. ., r. From equations 
25 and 28, P^y (£a , jy,) is completely determined such 
that

PT y ^a' -^ ~PT\y ^ \y-)Pv (y-) • (33)

Finally the correlation coefficient between Tand YD is 
estimated to be

'T,Y
E[TYD ] - E[T]E[yD ]

D
(34)

in which

* [TYD ]=

a = 1 j = I

E[YD ] and Var [ YD ] are given in equation 27, and 
and Var [T] are given in equation 31. The joint dis­ 
tribution expresses the relation between the rest period 
and the elevation of deposition and the correlation 
coefficient measures a degree of linear association be­ 
tween the rest period and the elevation of deposition.

If the shape of the yx (t) record is dependent on the 
flow conditions and bed-material properties, then the 
rest period statistics as determined by equations 28 
through 34 are also functions of flow conditions and 
bed-material properties.

In summary, the probability distribution for the 
marginal rest period of a sediment particle, the rest

period conditioned on the elevation of deposition, and 
the elevation of particle deposition and erosion can all 
be obtained from a continuous record of the bed eleva­ 
tion at a single point as a function of time. The only 
assumptions that are needed are: (1) Both erosion and 
deposition do not occur at the same point at the same 
time; (2) bed elevation is stationary (in the statistical 
sense); and (3) the number of particles per unit 
volume of the bed is constant. These assumptions are 
not severely restrictive, and the results are equally ap­ 
plicable to both field and laboratory analysis.

ESTIMATION OF THE PROBABILITY DISTRIBUTIONS 
OF THE STEP LENGTHS

The yx(f) record contained the information necessary 
to estimate the probability distributions of the rest 
periods. Both the yx (t) and the yt (x) records are neces­ 
sary to determine the step length statistics. Unfor­ 
tunately, more assumptions are also necessary and 
these assumptions may be considerably more restric­ 
tive than the ones made up to this time.

As previously mentioned, it will be assumed that each 
sediment particle on the stoss side of a dune makes a 
step in the downstream direction before it is deposited 
on the slip face of any dune. Once deposited it rests 
there until it is reexposed on the stoss side. Let EitjtV be 
the event that a particle, eroded from elevation, yt , of 
the stoss side of a dune, passes v dune crests before it is 
deposited at elevation, 3^-. Then the statistic {Xij, v> k '•> 
ij = 1, 2, . . ., n; v = 1, 2, . . .; k = 1, 2, . . ., miJiV } (fig. 3) is 
the measure of the conditional step length of the event, 
Ei j V . The term mi ^ v represents the total number of 
possibilities of the event Eit ^ v contained in the yt (x) 
record and the index k specifies a particular possibility. 
In general, the term m^will be different for each com­ 
bination of values i, j, and v.

A frequency analysis of the statistic (x^j^ k } gives a 
sample conditional probability mass function which is 
defined to be

+ E + + y
= 1, 2, . . . , s; i, j, = 1, 2, . . . , n; v = 1, 2, . . . , (35)

where
X= random variable describing the step

lengths;
Xp — class mark for the realizations of X; 
+i = lower and upper class limits of x^ , respec­

tively; 
s = number of class intervals for the realiza­

tions of X; and
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FIGURE 3.   Statistic, [x^v^, i,j = l,2,...,n;v = l,2,...;k = l,2,..., m;j  }, for the step length of a particle.

Ev = event that a particle passes v dune crests 
before it is deposited (fig. 3) .

The corresponding probability density function,

may be determined from

Px\YE ,YD ,Ev(xp \yi ,yjt v), 
and its mean and variance are estimated to be

m.

V yD = y," Ev 1 =

. . i,J,v

I/J ' V =
x. , , i,j,v,k

k = 1

and

m. . i,J,v
.,.

'(36)

in which
m. . i,J,v

If Y^, IQ , and E^are mutually independent (it seems 
to be reasonable that after a particle passes the crest of 
a dune it has probably lost track of where it came from), 
the density function [fx\YD ,Ev(x\y,v)] of the step 
lengths given that a particle is deposited at elevation y 
after passing v dune crests is estimated from the sam­ 
ple conditional mass function which is given by

(37)
i = 1

in which pyF(jj) is given by equation 26. The mean and
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variance of the step lengths of a particle which is 
deposited at y^ after passing v dune crests are estimated 
to be

i=
and

Var[X\YD =

in which

(38)

Likewise, the following sample probability mass func­ 
tions and corresponding means and variances are ob­ 
tained;

v = 1

E[X\YD = y.] =

PX\YD ,E
v

v = 1

y = 1 

PX\E V v) =

K39)

(V

E[X\Ev ]= (y.) 
D

Var [X\E

(y. 
D

•(40)

and

X\E
v =

E[X] = E[X\E ]P[E
V V

Var [X] = E[X\E ]P[E

v = 1

- (E[xir.

(41)

The density functions, fx\ y^UAy), fx\Ev (x \ y)» and /*(*) 
are estimated from equation sets 39, 40, and 41, respec­ 
tively.

The joint probability density function of X and YD , 
conditioned on the event Ev , [fx,YD \Ev (x> y\v)] can be 
estimated from a sample joint probability mass func­ 
tion,

/*r^'*-'' D v
(xn ,y.\v)

X (42)

and

' ) ' (43)

Note that PYD \EV (yj\v) = PYD^ because YD and Ev 
were assumed to be independent. The correlation coeffi­ 
cient of Xand YD , conditioned on the event Ev , is then 
estimated to be

PX Y \E D v

in which

E[XYD\EJ

[X\E] >/Var

' and

$[YD], Var [YD], fi[X\£J, and Var [X\^J are given 
by equation sets 27 and 40. Similarly, the joint prob­ 
ability density function of Xand YD , [/^yD(JC, y)] and the
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corresponding correlation coefficient, PX,YD > are 
mated to be

and

E[XYD ] - E[X]E[YD ]

(45)

(46)

in which

p = 1

The joint distributions (eqs. 43 and 45) express the rela­ 
tion between the step length and the elevation of 
deposition, and the correlation coefficients (eqs. 44 and 
46) measure the degree of linear association between 
the step length and the elevation of deposition.

The American Society of Civil Engineers (Task Com­ 
mittee on Preparation of Sedimentation Manual, 1962) 
defines bedload as that material moving on or near the 
bed. Accepting this general definition, it would appear 
consistent to count any sediment particle which was 
able to skip across a dune trough as suspended load, 
since it would be extremely unlikely that a particle 
would be able to pass the trough while moving on or 
near the bed. A very precise, and admittedly restrictive, 
definition of bedload is used for the purpose of this 
report. For the purposes of this report, bed load is 
defined as that part of bed material which is deposited 
on the downstream face of the dune from which it is 
eroded. Then the suspended load must be that material 
which is not deposited on the downstream face of the 
dune from which it is eroded, that is, all sediment parti­ 
cles which pass two or more dune crests before being 
deposited. The same particle could be counted as 
bedload during one step but as suspended load during 
the next step. By definition then, it follows that 
P [E^ = probability that a particle is transported as the 
bedload; and

probability that a particle is transported as the sus­ 
pended load during any step. The probability distribu­ 
tions and moments for the step lengths of a bed-load 
particle may be obtained by putting v = I in the sets of 
equations 35 through 40 and 42 through 48.

For a bed material composed of coarse sand it seems 
reasonable to assume that all particles are transported 
as bed load, that is, all particles eroded from the stoss 
side of a dune will be deposited on the downstream side

of the same dune; and therefore, P [E^ = 1, and 
P [Ev] = 0 for v ^ 2. For this case, a frequency analysis 
of the statistic [xij^k \ iJ = 1, 2, . . ., n; & = 1, 2, . . ., 
mi j v \ v = 1} gives a sample conditional probability 
mass function which is defined to be

X

p = 1, 2, i, j = 1, 2,

The corresponding probability density function, 
fx\y <YD (x\y',y), may be approximated from 
Px\YE ,YD(xp\yi,yj). Denoting the statistic [xitjtVik ', 
ij = 1, 2, . . .; k = I, 2, . . ., miJfV • v = 1} simply as {xij<k ; 
ij = I, 2, . . ., n; k = 1, 2, . . ., m^} (fig. 3), the corres­ 
ponding mean and variances are estimated to be

m.

k=
and

(48)

The term rni j represents the total number of bed forms 
in the sample for which the upstream side intersects 
the elevation ^ and the downstream side intersects the 
elevation yt . In general, the term mtj will be different 
for each combination of values of i and j (fig. 3).

Based on the statistic {Xij k } and assuming that YE 
and l^are mutually independent, the probability den­ 
sity functions, fx\YD(x \y)> fx^x^ an^ fx,Y (x>y) as we^ 
as the corresponding moments are estimated by setting 
P [EJ = 1 in equation sets 37, 38, 39, 40, 42, and 44.

Since the bed-form shape and rate of movement are 
dependent on the flow condition and bed material prop­ 
erties, it should be clear that equations 35 through 48 
are also functions of the flow condition and bed 
material properties. The statistic {x^} will be analyzed 
later to estimate the various probability distributions of 
the step lengths for a coarse sand for three different 
flow conditions.

Summarizing this section, the step length distribu­ 
tions can be estimated by combining the information 
contained in the yx(f) and yt(x) records. Additional 
assumptions are required however. These are: (1) No 
deposition occurs on the upstream sides of dunes, and 
no erosion occurs on the downstream faces of dunes; 
and (2) the elevation of particle erosion, YE , the eleva-
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tion of particle deposition, YD , and the event that a par­ 
ticle passes v dune crests before it is deposited, Ev , are 
mutually independent. The first assumption may not be 
strictly true especially, due to flow separation, in the 
neighborhood of dune trough where both deposition and 
erosion may occur at the same point. For dune flow con­ 
ditions, however, laboratory observation shows that 
such an area is small enough that the results should be 
applicable without an appreciable error. The second 
assumption seems to be reasonable because as a sedi­ 
ment particle passes a dune crest it likely loses the 
memory of where it came from. Estimation of P [Ev] 
would not appear to be a simple task. However, for a bed 
material composed of coarse sand, the assumption that 
all particles which are eroded from the stoss side of a 
dune will be deposited on the downstream side of the 
same dune seems to be reasonable.

BED-MATERIAL TRANSPORT EQUATIONS

The mean transport speed of a bed material particle, 
VT , is estimated to be

y _ Total distance traveled by a particle after m steps 
T Total time required for a particle to make m steps

mE[X] = E[X] 

mE[T] E[T]

for a large m (49)

.}p (y.)

in which VT denotes an estimate of the mean transport 
speed, VT ,

n n

E E E
v = 1 j = 1 i = 1

m. . i,J,v

m. . i.j.v k = 1
xi,i,v,k

P Y (y.-)py (y i )P(E }
*E D ]

and

E[T] =

m.

m. . j,k
" J k= 1

In equation 49, the duration of particle movement is 
assumed to be negligible compared to the rest period. 
This assumption will be used throughout this section.

The mean transport speed could also be estimated to
be

VT= E[X\y =
(50)

where V? also estimates the mean transport speed of 
a bed material particle. In general it can be shown 
that VT ± V^ and the results of this study will indicate 
that VT^ VT • Now the question is: Which one will 
give the better estimate of the mean bed material 
transport rate? The difference between the two equa­ 
tions is the manner in which the events are averaged 
or weighted. So, in order to answer the question, one 
must depend upon physical arguments and reasoning. 
In equation 50, the average speed of a particle at each 
elevation is weighted by the number of particles with 
this speed. Equation 50 gives the best estimate of the 
arithmetic mean of individual particle speeds. On the 
other hand, equation 49 computes the estimate of the 
mean particle speed as the total distance traveled by a 
number of particles divided by the amount of time re­ 
quired to transport the same number of particles. In 
other words, the center of mass of a group of particles 
is translated through a distance,

in time,

Equation 49 will be used in this section because it is 
based on a mass flux concept and it gives an unbiased 
estimate of the mean sediment transport rate. The 
mean particle speed given by equation 50 will be useful 
in the study of bed material dispersion because it is 
based on individual particle speeds.

Defining the bed load and suspended load as given in 
the previous section, the mean transport speed of a bed- 
load particle, VB , is estimated to be

E[X\£
VB = (51)

E[T] 

where VBis an estimate of VB and

EU^] . £ £

; = i = i

n .j

Similarly, the mean transport speed of a suspended load 
particle, Vs , is estimated to be
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vs =
I E E[X\E ]P[E] 

v v

(52)
E[T]

E[T]

v = 2

where

v = 2

/'N

VS = estimate of Vs ;

Ev = union of event, Ev , for u 12= 2.

E [X\£?J is given in equation 40. Note that
™* oo "" oo

P I I £ = 7""" \l v L-!
_v = 1 . 

and

v = 1

oo

* IK
v = 2 _

E^
v = 2

[X\Ev ]P[E y ]

oo
T*"^
\ nr IT 1

v = 2 
Using equations 49, 51, 52, and 53,

VT =

(53)

E[T]

v = 2

E[T]

v = 2

) . (54)

If all bed material particles have identical transport 
characteristics, which is reasonable for uniformly sized 
bed material, the mean total bed material discharge is 
obtained by use of the continuity concept,

Q T = Y g (l - (55)

where
QT = estimate of the mean total bed material dis­ 

charge in weight per unit time; 
y s = specific weight of the bed material; 
6 = porosity of the bed; 
W= width of the channel;
h = average depth of the zone in which bed material 

movement occurs; and V^is given in equa­ 
tion 49.

Similarly, estimates of the mean bed-load discharge 
and suspended load discharge are, respectively,

and

Q =y (l-G)WhV_P[EJ ,

= Ys (l -0)lVhVs (l -

(56)

(57)
s^, yx

where VB and Fs are given in equations 51 and 52, 
respectively. From equations 54 through 57,

QT - QB (58)

Although equations 55, 56, and 57 have the form of a 
continuity equation, the concept of continuity applies 
only in a statistical sense, because particles move only 
when they are exposed on the stoss side of a dune or 
when they are in suspension. Hubbell and Sayre (1964) 
proposed that the average depth of the zone of bed 
material movement, h, be estimated from the yt (x) 
record. For this method, the length of the reach for 
which h is to be determined is divided into sections. 
Starting from the upstream end, each section of length 
/j extends from the dune trough at which the section 
begins to the first trough downstream that is deeper 
relative to a line parallel to the plane of the mean bed 
surface. After sectioning, a mean depth of sand above 
the projected line for each section, /ijis determined, and 
the h for the total reach, Lx , is computed as the 
weighted average of the /i/s for each section. Expressed 
mathematically,

m

(59)
i = 1

The reasoning behind the procedure is based upon the 
assumption that although the individual dunes may 
change shape as they progress downstream, a statisti­ 
cal constancy of form exists over a long reach. Hence, 
quantitatively the particles subject to movement are 
those that would move if the entire profile were to 
progress downstream without changing form, and the 
depth of bed material movement is defined by lines that 
are parallel to the mean bed surface and extend 
downstream from the deepest trough.

If all bed material particles are assumed to be 
transported as the bedload,

(60)

where VB is determined from equation 51. For coarse 
sand P [EJ is expected to be very close to unity because 
the suspended load is negligible compared to the bed 
load. For a fine sand for which Pt^l =^1, equation 60 
would give only an approximation to the total load.
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Equations 55, 56, and 57 can be used with measured 
yx(i) and yt (x) records to compute the various transport 
rates. However, in order to apply the equations to the 
prediction of the bed material transport rate where the 
y^(t) and yt(x) records are not available, the relations, 
E[X\ YE = yt, YD = yj, Ev],
E[T\YD = yj\, P[EV], p y ty), PyE(y^ and h, to perti­ 
nent hydraulic and sediment parameters must be 
established.

The mean transport speed of bed material particles 
deposited at elevation yj, which is denoted by V^j), 
(more precisely, deposited between the elevations TJ, 
and t)j+1, centered at yj ) may be estimated

(61)

where VT (f) estimates VT (j),

oo n E E
v = 1 i = 1 

and

m. . i.J.v

E x l 'J' v '

m. .

Based on equation 61, another transport equation can 
be developed as follows. Let £, denote the percentage of 
volume between elevations TJ, and TJJ+I occupied by

dunes over a given reach; then, 
from the yt (x) record (fig. 4),

~

can be estimated

(62)

where Lx is the total length of yt (x) record, and Xjft is 
defined in figure 4. Applying equations 61 and 62, the 
mean total bed material discharge can be expressed as

-9)W £

= y s (l-9)W

..

E[X\y =yJ

j j (63)

where
QT = estimate of mean total bed material dis­ 

charge; and
kyj = nonstandardized class width associated with 

elevation y/Aty = TJJ+I - 17,).

Equation 63 takes into account the local variation of 
the depth of the zone of bed material movement with 
respect to the elevation of deposition, and demonstrates 
to what extent each elevation contributes to the total 
transport rate. Similarly, the mean transport speed of a 
bed-load particle deposited at elevation yj} which is 
denoted by VB(j), can be estimated from equation 61 by 
considering P[£J = 1 and P [Ev] = 0 for v ^ 2. It can 
be shown, of course, that equations 54, 56, and 57 also 
apply at each elevation j as well as to depth-averaged 
values.

FLOW

X],2 Xj,3 . Xj,4 X),5 Xj,6

•*• x

FIGURE 4.   Method for estimating the percentage of volume occupied by dunes between elevations ijy and TJJ+I ; f   = ~ ^> ^
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The third method to compute the mean total bed 
material discharge is based on the following reasoning:

F Number of particles"! [~ Weight "1 
QT = deposited per x per

L unit time and area J L particle J

("Mean distanced
x traveled by x

L a particle J

Width "1
of (64) 

..channel J

where QT is the mean total bed material discharge in 
weight per unit time. Restricting the attention to eleva­ 
tion yjt the terms in equation 64 are estimated as 
follows:

Number of particles deposited per 
unit time and area at y.

m .
J + 

Ay. , '
k = 1

[Weight per particle
at yy

•]• Vs"' 6 ' 

"/

~1

. and

Mean distance traveled by a particle 
which is deposited at elevation y-

D

where Lt is the total length of yx(f) record, and all other 
symbols have been defined previously. Summing the 
product of the terms in equation 65 over all elevations,

YJ1 - 6)W
m. 

J
,(66)

where 
QT = estimate of mean total bed-material discharge;

and 
W = width of channel.

Equation 66 also illustrates the contribution of each 
elevation to the total transport, but its primary distinc­ 
tion is that the transport rate is computed from the 
sounding records with a minimum number of computa­ 
tions.

The relationship between the three transport equa­ 
tions, 55, 63, and 66, will now be demonstrated. First, 
the comparison of equations 55 and 66 is demonstrated. 
Combining equations 22, 25, and 66,

Ys d-e)w

j = 1

N

[X] , (67)

Multiplying and dividing by the marginal rest period 
and utilizing equations 20, 21, 25, 30, and 31,

'

m..

Ek =
... ,(68)

As the value of Ay decreases the value of the last 
term can be approximated without appreciable error, as

m.

(69)

Strictly speaking m/A^ is equal to or slightly greater 
than the term

(fig. 1). Assuming a long record with small vertical 
class intervals such that equation 69 is valid and such
that m , =

Q" = Y (1-

? equation 68 reduces to

m.

E[T]

which would be equivalent to equation 55 provided that 
the average depth of the zone in which bed-material 
movement occurs, h' is defined by

h 1 = (71)

Equation 71, is similar to equation 59 except that it is 
based on the time record of depth, yx(t), while equation 
59 is based on the longitudinal profile, yt (x).

To investigate the relation between equations 63 and 
66, we proceed as follows. The last term of equation 66 
can be approximated without an appreciable error, as 
rrij; Abusing equation 69. Replacing the last term by its 
approximate value, and multiplying equation 66 by the
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right-hand side of equation 30 while dividing by the 
left-hand side,

. . . (72)

The number of bed forms contained in the yx(t) record 
and which also contains some deposition in the class in­ 
terval, rrij, should be almost equal to the total number of 
bed forms with both an upcrossing and a downcrossing 
in the interval, mjj. Assuming nij = m^, equation 72 is 
identical to equation 63 except that the percentage of 
the volume in the class interval occupied by dunes is 
computed from the yx(t) record instead of from equation 
62 which is based on the yt(x) record.

In summary, three transport equations have been 
presented, equations 55, 63, and 66. Although the equa­ 
tions appear quite different in form, they are all based 
on similar assumptions. As the record length becomes 
long and the class intervals reduce to zero in the limit, 
the three equations would become identical provided 
that either the yx (t) record or the yt (x) record could be 
used to determine the active depth. (This should be true 
for equilibrium flow.) In the following section, the total 
load will be computed for three flow conditions using all 
three equations, and the results will be compared.

GENERAL TWO-DIMENSIONAL STOCHASTIC MODEL

FOR DISPERSION OF 

BED-MATERIAL SEDIMENT PARTICLES

Let us define the following stochastic processes:
N(t)

X (t) = ^ Xi = longitudinal position of a bed- 
; = o material sediment particle at 

time t in which X (0) = X^ = 0.

N(t) = counting process describing number of steps 
taken by a bed-material sediment particle 
in time t.

Xi = length of ith step of a bed-material sediment 
particle.
n

X(ri) = 2* %i = longitudinal position of a bed- 
1 = 1 material sediment particle after 

n steps.

Y (t) = vertical position of a bed-material sediment
particle at time t.

YD(ri) = elevation at which a bed-material sediment 
particle is deposited after n steps.

The probability that the particle has, at time t, traveled 
a distance equal to or less than x and that it is located at 
an elevation equal to or less than y may now be ex­ 
pressed as the joint distribution function

F(x,y;t) = P(X(t) < x, Y (t)

> N(t) = n] • (73)
n = 0

Using the definition of conditional probability and 
assuming that the duration of the particle movement is 
negligible, equation 73 can be restated as

F(x,y;t) = x, YD (n) <y, N(t) =n]

x >
n = 0 

y
= f P[X(n) < x, N(t)

mm

(74)

where
jmin = lowest elevation of deposition; and 

fY (n) (y) = probability density function of YD(n).
The event, (N(t) = n }, can be expressed in terms of the 
rest period of a bed-material sediment particle

{N(t) = n} = {T(n) < Opj{T(n + 1) > t} (75)

where
{ } = events;

O = intersection of events;

<C 
T(n) = 2< Ti> and

i = l 
Tt = random variable describing the duration of

ith rest period of a bed-material sediment 
particle.

By virtue of equation 75, it follows that

P[N(t) = n] = P[T(n) < t, T (n + 1) > t]

= P[T(n) t - T(n)] . (76)

For further simplification of equation 74, the follow­ 
ing assumptions are made: (1) X(n) and N(t) are 
mutually independent for every n. (2) Xt for i ^ 1 are 
independently and identically distributed according to 
the probability density function fx(x), where
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0 ^ x < oo. Outside this range, fx(x) = 0. (3) Xjis inde­ 
pendent of YD (f) for i ±j. (4) YD(i) for i ^ 1 are indepen­ 
dently and identically distributed according to the prob­ 
ability density function fyD(y}, where ymin =^ jysS ymax . 
Outside this range, fyD(y} = 0. (5) T{ for i ^ 1 are inde­ 
pendently and identically distributed according to the 
probability density function fT (t), where 0 ^ t < oo. 
Outside this range, fT (t) = 0. (6) Tt is independent of 
YD (j — 1) for i =£/'. In other words, assumption 1 states 
that the total distance X(ri) traveled by a sediment par­ 
ticle after n steps should not depend on which time in­ 
terval within [Q,t] that these n steps occurred. The step 
lengths are always positive so that the particle always 
moves in downstream direction (part of assumption 2). 
Each step length depends on the elevation at which the 
particle is deposited at the end of that step (assumption 
3). The elevation at which the particle is deposited at 
the end of any step does not depend on the elevation at 
which it was deposited at the end of any previous step 
(assumption 4). Finally, the duration of each rest period 
depends on the elevation at which the particle was 
deposited at the end of the previous step (assumption 
5).

Utilizing assumption 1, equation 74 becomes 
y

F(x,y;t)=f <x\YD (n) =
y  ^ n = 0

P[N(t) = n\Y(n) = y']/D
(y')}dy'

P[X(0) <x\YD (0) =y<]

P(N(t) =0\YD (0) =y']/ y (0) (y')dy'
D

j 
f =y']

V   n = 1 -'mm

  P[N(t) =n\YD (n) = y']/y ( n) (y')}dy' .(77)

Under assumptions 2, 3, and 4, and using the concepts 
of joint and conditional probability,

P[X(n) <x\YD (n) =y'] 

= P[X(n-l) +X 

x

0

= y 1 ]

V D

x x' 

= f dx'/ f
0 0

X(n- l),Xn\YD (n) v ^"

and using assumptions 3 and 4,

P[X(n) < x\Yn (rO = y r  L)

X X'

0 0

0 0

*X(n - 1) ( ** )fX\Y
D

(n -1)
(78)~\* D

in which
n - 1

E
i = 0

X (n - 1) = £ X. , X Q =

(n -1)

and

(n - 2) 
fx (6)

(n)

- 6)d6 ; n = 3, 4, 5, . . .

(79)

In equations 78 and 79, fx(n -i),
denotes the joint probability density function of

(n-l)

X(n - 1) and Xn , conditioned on YD(n), fx (O is the 
(n -l)-fold convolution of the probability density func­ 
tion for the length of a single step, and it is equal to the 
probability density function for the distance traveled by 
the particle in (n -I) steps, and fx\YD(x \^) ig tne con " 
ditional probability density function for a single step 
length given that the particle is deposited at elevation y.

Turning now to the other part of equation 77 and 
using equation 76 and assumptions 4, 5, and 6,

P[N(t) = n\YD (n) =y']

= P[T(n) < t, Tn+l >t-T(n)\YD (n) = y 1 ]

l

•//
0 t - t 1

t oo

r (n) r
= J fT U')dt' J

D
(t\y')dT (80)
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in which
n

T(n) = £ T j

i = 1

t 1 ^ 
(n) p (n-1)

f tt*\ f l-t 1 \ 1 f IC*\ f It* - (\\ Hfi'T(n) IT") J J T (V> I T ( I tf)"tf -
0

n = 2. 3. 4, ... , >(81)

and
(n)
fT (t<) =fT (t) ; n= 1 .

In the above, Tre+1 is the random variable describing the
duration of the (rc+l)th rest period of a particle,
/T(w),Tn \r (rc)(*'»T \y') ig the joint probability density
function of T(n) and Tn+1 , conditioned on YD(ri),
/T\YD (* \y) is the conditional probability density func­
tion for the duration of a rest period given that the par-

(n)
tide was deposited at elevation y, and f^t) is the ra-fold
convolution of the probability density function, f^t), for 
the duration of a single rest period and is equal to the
probability density function for the duration of n suc­
cessive rest periods.

Similarly, the terms for n = 0 in equation 77 become:

P[X(0) <x\YD (0) =y'l =1 (82)

because X(0) = X0 = 0 and 0 ^ x < oo, and

P(N(t) = 0\YD (0) = y'J =P[T 1 > t\YD (Q) = y 1 ]

oo

= f /T , v (t'\y')dt' , (83) Jf T " YD

where TJ is the random variable describing the dura­ 
tion of the first rest period in time t. It is important to 
note that the initial condition, X(0) = XQ = 0, implies 
that the particle starts its first rest period at t = 0. 

Introducing equations 78, 80, 82, and 83 into equation 
77,

y
F(x,y;t) = f f (y')dy' f fT . v (t'\y')dt' 

J D J. N D
 ^min

\) OO / *Y* *Y* '

r r- f r r (n ~ 1}+ f ry (y')dy' V / da:' / / (?)
J D ^"^ \ -^ -^
>Vn " =1 \° °

t °° \

^x^y,,^' - S\y')dC-/rT U')dt'/ fTXy (t\y')dt 1(84)
u 0 t - f u /

The first term of equation 84 represents the joint prob­
ability that the particle has not moved from its initial
position and that its initial elevation is equal to or less
than y, and it is not a function of x. Hence,

2 | 2 y
dxdy [F(x 'y;0] |n = 0 = a*ay J fy^^y 1

^rnin

00

/wD (tlxyl)dt ' EO  

The corresponding density function is therefore

f(x,y,t) = d F(x,y; t)
J 9oc9y ^

00 / oc

E
| r (i-D

" An X XV7D
n = 1 \ 0

t 00 \

. r (n) r \
J fT (t l )dV / /-TVy (t\y)dt .(85)

0 Y-f D J

If a large number of identical particles are initially at
rest at x = 0, y = y0, equation 85 expresses the
longitudinal and vertical distribution at time t of the
particles which have moved from their respective in­ 
itial positions. It should be noted here that f(x, y; t) is
not a true probability density function because

00 ^max
J dx J f(x,y;t)dy = 1 - P(N(t) = 0] <1 .(86)

0 y .  'mm

That is to say, equation 85 applies only after the parti­ 
cle has moved from its initial position. The expression 
f(x, y; t) does not exist for x = 0. 

If we assume that X^is independent of YD(j) for all i 
and j and drop assumption 3, equation 85 reduces to 
equation 8,

f(x,y.t)

00 £ 00

(n) p (n) p
= fy (y)Y_,f\ (x) J /T U ' )dt 'J fT\Y (t^)dt ' (8)

D n = l' 0 t - t' D 

which is the Sayre-Conover (1967) two-dimensional
stochastic model. The difference between equations 85
and 8 is that equation 85 takes some of the dependence
between X and YD into account whereas equation 8 is 
based on the independence of X and YD . Hence, the
Sayre-Conover model is a special case of equation 85.
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The marginal case of equation 85 gives the 
longitudinal distribution at time t of the particles which 
have moved from their initial positions. Integrating 
equation 85 over y,

ymax <» x . .. t . . C  » r (n - 1) (n)
f(x;t)= I f(x,y,t)dy= > f fv (£) d£ I fT (t') df 

J ** i J A ^ *
'min n = 1 0

t - V
/
yr

max
<t\y')f

mm 

By virtue of assumption 1,

.(87)

J
max

f
mm

r max

min

= fx T (x- (88)

Substituting equation 88 into equation 87 and rear­ 
ranging terms,

J

(n-1)

i 
J"/-T (t')dt' J^ fT (t)dt

Because

J
(n - 1) (n)

and from equation 76,

t °° 

P[N(t) =n] = C fT (t l )dt' J° (89)
0 t-

Meanwhile, equation 75 can be restated as

{N(0 = n} = (T(n) < t}f|{T(n + 1) > t}

= (T(n) < t} - {T(n 

= (T(n) < t} - {T(n

t}'

where (T(n+l) > t} c denotes the complement of the

event {T(n+D > t}. Because {T(n+l) ^ t} is a sube- 
vent of {T(n) ^ t}, it follows that

P[N(t) = n] =P[T(n) < t] - P[T(n + l) < t ]

1 (n) ' (n + 1) 
= J fT (t')dV - J fT (t>) dt< . (90)

0 0

From equations 89 and 90, we have the marginal prob­ 
ability density function,

f(x;t) = fx (x)P[N(t) = n]

(n)

n = 1

r 
J

(n)
dt 1 . (91)

Equation 91 is identical to the Sayre-Conover (1967) 
one-dimensional stochastic model which is given in 
equation 10. As with equation 85, here also f(x;t) is not 
a true probability density function because

OO

J f(x;t)dx = \ - P[N(t) = 0] <1 , 

0

where P [N(t) = 0] is the probability that the particle 
has not moved from its initial position.

In order to apply equations 84 or 85, the probability 
density functions /yD(y), fr\YD(t\y), and fx\yD(x\y) 
must be known. These density functions are estimated 
from equations 25, 28, and 39. The probability density 
functions fT (t) and fx (x) are determined by the rela­ 
tions

max

D
(y)dy (92)

min

and

/x u> - /
max

(y)cfy (93)

min

where ;ymin and ;ymax are estimated from the yx(t) record. 
Equations 92 and 93 are the continuous forms corres­ 
ponding to equations 29 and 40 (or 41), respectively. 
With fT (t) and fx (x) determined, the corresponding

(n) (n-1)
convolutions, fT (t) and fx (x) are determined from equa­ 
tions 81 and 79, respectively.
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ANALYSIS AND DISCUSSION OF RESULTS

EXPERIMENT AND BASIC DATA

Three dune runs were made in a tilting recirculating 
flume of rectangular cross section, 61 m long, 2.4 m 
wide, and 1.2 m deep. The flume has been described in 
detail by Williams (1971).

The bed material used in these experiments was a 
screened river sand (Cherry Creek sand), with a med­ 
ian sieve diameter, d5Q = 1.13 mm, and a geometric 
standard deviation, ag = 1.51. The size distribution, 
shown in figure 5, was obtained by a sieve analysis of 
3,000 grams of bed material.

After an equilibrium flow, as defined by Simons and 
Richardson (1966), was established, the yx(t) and yt(x) 
records, the total bed-material discharge, and the hy­ 
draulic properties of interest were measured. The 
methods and procedures of the measurements have 
been described in detail by Lee (1969). The summary of 
measured and derived data is given in table 1. The 
values of the water discharge, depth, energy slope, bed 
shape, and total bed-material concentration presented 
in table 1 are the average of several individual 
measurements. The sampled load was measured by a 
DH-48 sampler. The number of measurements was the 
same as the number of yt (x) charts.

99.0
= 1.13mm 

.72mm 

" 0.75mm

0.4 0.6 as 1.0 2.0 3.0 
SIEVE DIAMETER, IN MILLIMETERS

FIGURE 5.   Size distribution curve of bed material.
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TABLE 1.   Basic data and computed parameters
Water discharge Flow depth Energy slope Water temperature 

Qw, m 3/s d, cm Se T, °C
Run Mean flow velocity 

M Standard M Standard U, cm/s M Standard M-.,,, Standard 
Mean deviation Mean deviation Mean deviation Mean deviation

4A 0.464 .003 31.1 0.6 61.3 0.00167 0.00009 20.0 0.3 
16 1.24 .006 90.8 0.9 55.8 0.00029 0.00021 22.8 0.2 
17 1.53 .008 89.3 0.6 70.4 0.00047 0.00005 22.0 0.2

Total Bed-material discharge
Sampled load 

Run Concentration Mean total concentration 
Cy, mg/L load mg/L

M Standard M Standard 
Mean deviation Mean deviation

Mean Chezy Mean bed Mean Streamjjpwer 
resistance shear stress shear velocity T bU> 
coefficient T f,, d/cm2 [/«, cm/s d/cm«s

C/Vg

4A 168.6 53.6 2.77 1.5 6.1 8.6 50.8 7.13 3110 
16 8.9 3.1 0.39 0.0 0.0 12.1 25.9 4.91 1450 
17 29.7 10.8 1.61 6.3 10.2 11.0 41.2 6.43 2900

yx(t) Record yjU) Record
Mean Time interval of Range of 

Run Froude number Length of record Lag interval Length of record Number of measurements lag interval 
Fr Lt , hours min Lx ,m charts hours cm

4A 0.35 312 2.4 1235 31 6 3.7 - 13.0 
16 0.19 80 1.2 1006 33 1 8.6 - 13.6 
17 0.24 109 0.6 983 30 1 7.2 - 11.8

The yt(x) charts were obtained by mounting a sonic 
depth sounder on the instrument carriage and travers­ 
ing it along the centerline of the flume in the upstream 
direction. The sonic depth sounder has been described 
by Karaki, Gray, and Collins (1961). Although the 
duration of traverse was approximately 5 minutes, the 
yt(x) record was considered to be instantaneous. The 
yx (t) record was obtained by locating a sonic depth 
sounder at the centerline of the flume 42.1 m 
downstream of the headbox. Both the yt(x) and yx(t) 
records were digitized with an analog-to-digital con­ 
verter at the lag intervals shown in table 1. The lag in­ 
terval on the yt(x) charts were not constant because the 
speed of the carriage was somewhat different for each 
chart. The output of the converter was to computer 
cards so that all statistics could be processed on the 
digital computer.

PROBABILITY DISTRIBUTIONS OF THE ELEVATIONS 
OF DEPOSITION AND EROSION

The sample probability mass functions for the eleva­ 
tion of deposition and erosion were computed using 
equations 25 and 26 and the yx (f) records. The results of 
calculations for the three flume runs are presented in 
table 2.

The yx (t) record of each run was standardized so 
that the class mark, yt , measures the elevation of 
deposition or erosion in terms of the standard devia­ 
tion about the mean bed elevation. The class width of 
0.4 was used for all class marks. The frequency 
histograms for the elevation of deposition and erosion 
are plotted in figure 6.

The truncated Gaussian probability density function, 
defined by

fy (y) = fy (y)
Y D E

i -\y2
c 1 ?

- ^?~ ~ i or7 1 e~2 y"
2.4 12 SZn

I C ~2 y * -±- e dy
^ J-2A 

for -2.4 < y < 2.4

fv ^) = fv {y } = ° °therwise *
YD Y E )

appears to fit the data reasonably well. A symm 
triangular density function defined by

> 
fy (y) = fy (y) =-^y + ^4 forO< y < 2.4

Y D Y E 2.4 *' q

fy (y) -fy (y) = -Jry + ri for ~ 2A <y < °
YD E 2 A L '^

fv (y) = fv (y) = 0 otherwise , 
Y D E

also appears to fit the data reasonably well. Equa 
94 and 95 are both plotted in figure 6. In equatioi 
and 95, /yfl(y) and fyE(y) are tne probability de 
functions of the elevation of deposition and ere 
respectively, and y is the standardized elevation.

Both distributions assume nonzero values on] 
-2.4 ^y^ 2.4 and the two models postulate 
YD and YE are identically distributed. The trunc 
limits on these distributions are rather arbitrary

K94)

tetric

>(95)

tions 
ns 94 
nsity 
>sion,

y for
that 
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FIGURE 6.   Frequency histograms, triangular density function, and truncated Gaussian density function for the elevation
of deposition and erosion.
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The mean and variance for the truncated Gaussian 
density are

E[YD ] =E[Y£ ] =0 ,

and

2.4 
: 1.017 f y 2g(y)dy = 0.891

-2.4

(96)

where g (y) =    e . For the triangular density

and
E[YD ] =E(YE ] =0

D ] = Var[y£ ] = E[Y (97)

The variances of these distributions are quite sensitive 
to the assumed truncation limits.

A goodness of fit test using the chi-square statistic in­ 
dicated that neither model would be rejected for runs 16 
and 17 at a significance level of 0.05. For run 4A, 
however, both models were rejected at the same level of 
significance. As seen in figure 6, the truncated Gaus­ 
sian density appears to give a slightly better approx­ 
imation to fyD(y) and /V£(;y); but, the triangular density 
is much easier to handle in analytical treatments. The 
variance of the triangular distribution is even more 
sensitive to the assumed limits than is the variance of 
the truncated Gaussian distribution. Therefore, the 
triangular distribution probably should not be used in 
predicting the variance.

For stationary processes, continuity requires that the 
probability of erosion equal the probability of deposition 
for all elevations. Therefore, the density functions for 
the elevations of deposition and erosion must be identi­ 
cal. The mean and variance of sample histograms as 
well as the total number of points available for analysis, 
^mi , are shown in table 2. Little data were available for 
run 16, only 134 crossings compared to 2,167 for run 4A 
and 708 for run 17. Although run 16 was continued for 
33 hours, the very low transport rate (table 1) and slow 
movement of the bed forms limited the number of cross­ 
ings available for analysis. It should also be pointed out 
that equilibrium flow was never attained for this flow 
which was barely above the initiation of motion stage.

REST PERIOD DISTRIBUTIONS

The sample conditional probability mass function of 
the rest periods were computed by determining the

difference betweeen the time of reexposure and move­ 
ment and the time of burial of the center of each class 
mark for each crossing event, ra^;  , that occurred in the 
yx(t) record (fig. 2). The results of the measurements 
are presented in tables 3 through 5, and examples of 
the mass functions are presented in figures 7, 8, and 9. 
The standardized yx(t) record was used and the class 
width of the elevation was taken to be the same as that 
used in determining the probability distribution for the 
elevation of deposition, 0.4.

The mean and variance of the conditional rest 
periods were computed using equation 30, and the 
results are presented in table 6. These results are also 
plotted as a function of bed elevation in figure 10. As 
can be seen from figure 10, both the conditional mean 
and variance of the rest periods decrease with increas­ 
ing elevation of deposition. Inspection of figure 2 indi­ 
cates that the conditional mean should decrease with 
increasing elevation of deposition. However, the 
decrease of the variance is not so obvious. Because the 
mean value is decreasing with increasing elevation, the 
decrease in the variance is not too meaningful. The 
coefficient of variation (standard deviation/mean) is 
probably a better measure of the variability of the rest 
periods. Restricting our attention to runs 4A and 17, 
for reasons to be discussed later, the coefficient of 
variation remained roughly constant in the range of 
0.6 0.75 for elevations above the mean bed elevation, 
and it increased with decreasing elevation to a value 
of about 1.5 at 2.4 standard deviations below the mean 
bed elevation. Thus the variability of the rest period, 
as measured relative to its mean, also decreases with 
increasing elevation at least up to the mean bed eleva­ 
tion.

As seen from figure 10, both the mean and variance
of the conditional rest periods may be approximated by 
an expression of the form,

E[T\TD =

and

=Ae

= Ce

~By

~Dy
(98)

The constants A, B, C, and Din equation 98 were deter­ 
mined by a regression analysis of the data plotted in 
figure 10, and the resulting values are presented in the 
figure. The values A and C represent measures of the 
mean and variance of the rest period, respectively, for 
the mean bed elevation. The values of B and D are 
measures of the rate of change of the mean and 
variance of the rest period with bed elevation, respec­ 
tively.

The distributions of the conditional rest periods were 
approximated by the two-parameter gamma probability
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FIGURE 7.   Sample probability mass functions of the conditional rest periods with fitted two-parameter gamma
functions (run 4A).
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density function which has the form,

v'1 " (k2 v ) t>y >y
where

F(«) = gamma function; and 
^2, y rz, y = scale and shape parameters, respectively.

The scale and shape parameters were estimated by 
using the method of moments,

L 2,y
E[T\yp =yl 

Var[T\YD = y]

and

2,y Var[T\YD =

(100)

and the data contained in table 6. The variation of k2 y 
and r2 .yWith bed elevation are presented in table 7 
along with the results of a chi-square goodness of fit 
test. The ability of the two-parameter gamma distribu­ 
tion to fit the measured mass functions is illustrated in 
figures 7, 8, and 9.

From table 7, as well as from figures 7, 8, and 9, both 
the scale and shape parameters increase with increas­ 
ing bed elevation, with a few exceptions for the shape 
parameter. The shape of the conditional density of the 
rest periods (figs. 7, 8, 9) approaches a J -shape and 
becomes more peaked as bed elevation decreases. 
Therefore, the exponential density might fit better 
than the two-parameter gamma density below the 
mean bed elevation (y < 0). The exponential density 
function is a special case of the gamma density with 
r2y = 1. The better fit of the exponential density seems 
to be consistent with the fact that all rejections of the 
chi-square test (6 rejections out of 22 at a significant 
level of 0.05) occurred below the mean bed elevation 
(table 7). It would appear that the exponential form for 
the conditional rest period as proposed by Grigg (1969) 
is only valid for elevations below the mean bed eleva­ 
tion.

A major factor in determining the degree of fit be­ 
tween the measured density functions and the fitted 
curves in figures 7, 8, and 9 appears to be the number of 
points available from which the distribution was con­ 
structed. In general, if more than 100 points were 
available, mti , the fit is pretty good. The weakness of 
the data for run 16 is very apparent. Even at the mean 
bed elevation, only 18 crossing events were observed.
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Combining equations 98 and 100, the scale and shape 
parameters can be estimated using only the constants 
A, B, C, and D.

AePy

and

2,y

M101)

The sample joint probability mass functions of the 
rest period and the elevation of deposition were com­ 
puted from equation 33 using the results presented in 
tables 2 through 5. The results of these computations 
are presented in tables 8, 9, and 10. The correlation 
coefficients were computed by using equation 34, along 
with the data contained in tables 2, 6, 8, 9, and 10. The 
values of the correlation coefficients were -0.27, -0.53, 
and -0.26 for runs 4A, 16, and 17, respectively. The 
rest period and the elevation of deposition are 
negatively correlated, but the degree of their linear 
association is not strong.

The sample marginal probability mass functions, 
Pr(O> were computed by use of equation 29 and the 
data contained in tables 2, 3, 4, and 5. The results of 
these computations are also presented in tables 8, 9, 
and 10. The sample frequency histograms for the 
marginal rest periods are plotted in figure 11. The 
mean and variance of the marginal rest periods were 
computed by use of equation 31. These results are also 
presented in figure 11. The variance values appear to be 
extremely large. For example, the standard deviation 
for run 4A is almost four times the mean value. The 
computed variance values are extremely dependent on 
the long rest periods, the extreme events generally oc­ 
cur at low bed elevations. For example, by ignoring rest 
periods of greater than 2,000 minutes, which have a 
probability of occurrence of only 0.0015, the variance is 
reduced from 42,000 to 12,000.

Also shown in figure 11 are exponential density func­ 
tions with a mean equal to the computed marginal 
mean. The exponential density function fits the data 
reasonably well; however, there would appear to be 
room for improvement. A gamma density fitted by the 
method of moments would be an extremely poor fit of 
the data. A gamma distribution, estimated by the max­ 
imum likelihood method may fit the data reasonably 
well.

The marginal distribution of the rest periods could 
also be estimated by

2.4

(102)= \ 
J

f
-2A D

(t\y)f (y)dy 
D

where fT \ Y & \3^ is tne two-parameter gamma density 
(eq. 101) with parameters given by equation 101, and 
fY ( y) is given by equation 94, or it could be obtained by 
fitting the frequency histograms contained in figure 11 
with some assumed distribution.

STEP LENGTH DISTRIBUTIONS

The yt(x) record was standardized after removing a 
straight line trend. The trend determined by the 
method of least squares accounted for the possibility 
that the sand bed in the flume was not parallel to the 
instrument carriage rails supporting the sonic sounder. 
In standardizing the yt (x) record, the standard devia­ 
tion obtained from the yx(f) record was used. With these 
standardized data, the statistic {Xijt k\ was analyzed 
(fig. 3) to estimate various probability distributions of 
the step lengths.

The sample probability mass functions given the 
elevations of deposition and erosion were computed by 
using equation 47, and the results are presented in 
tables 11 through 56. Examples of these mass functions 
are shown in figures 12, 13, and 14. The corresponding 
means and variances were estimated by equation 48 
and summarized in tables 57, 58, and 59.

It can be seen from tables 57, 58, and 59, as well as in 
figures 12, 13, and 14, that the conditional mean of the 
step length decreases with an increase in either the 
elevation of deposition or of erosion. This result could be 
expected simply from the typical shape of the dunes. 
Likewise the conditional variance of the step length 
tends to decrease with an increase in the elevation of 
either deposition or erosion. The above statements es­ 
sentially imply that longer step lengths are associated 
with lower elevations at which a sediment particle is 
eroded and deposited, and vice versa.

The distribution of conditional step lengths were ap­ 
proximated by the two parameter gamma probability 
density functions,

(x\y,y')

k,
IMrj 

where

Uy<y" (103)

y and y' = arguments of YE and YQ, respec­ 
tively; and

&: vv ,andr1:yv > = scale and shape parameters, 
respectively.

The parameters k^ y v . and r1> y v . were estimated by the
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FIGURE 13.   Sample probability mass functions of the conditional step lengths given the elevation of erosion is 0.0 with Gamma fits (run 16).
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method of moments, using data contained in tables 57, 
58, and 59 and the expressions

and
Var

Var [

= E[X\y_. = y, y_ = y']fc1£ J ' D l,y,y j

The variation of klt v y • and rx y y , with the elevations of 
erosion and deposition are shown in tables 60, 61, and 
62. These approximations are also shown in figures 12, 
13, and 14.

The chi-square test for goodness of fit was used to 
test these gamma approximations. The results of these 
tests are summarized in tables 63, 64, and 65. None of 
the 81 distributions tested could be rejected at the 0.05 
level of significance. In other words, there is no good 
statistical reason to reject the hypothesis that the prob­ 
ability density functions for the step lengths, given the 
elevation of deposition and erosion, are distributed ac­ 
cording to the two-parameter gamma distribution. The

1.0
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o
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fitted gamma distributions are also plotted and the 
example mass functions presented in figures 12, 13, 
and 14. These figures also help to illustrate the abili­ 
ty of the two-parameter gamma distributions to fit the 
measured conditional step length distributions.

The sample conditional mass functions, given the 
elevation of deposition, were computed based on equa­ 
tion 37 and the data contained in tables 2 and 11 56. 
These mass functions are presented in tables 66, 67, 
and 68. The corresponding conditional means and 
variances were computed using equation 38 and are 
presented in table 69 as well as being plotted in figure 
15. Again, the general decrease in the expected value of 
the step length with an increase in the elevation of 
deposition is apparent.

The sample joint probability mass function of the 
step length and the elevation of deposition was com­ 
puted by equation 43, and the results are shown in 
tables 70, 71, and 72. The correlation coefficients were 
computed by equation 44, and their values were  0.15, 
-0.15,and-0.20 for runs 4A,16, and!7, respectively, in­ 
dicating that the step length and the elevation of deposi­ 
tion are negatively correlated, but the degree of their 
linear associations is not strong. The sample marginal 
probability mass functions, Px(xp)> computed using 
equation 40, are also shown in tables 70, 71, and 72. The
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FIGURE 15.   Variation of the conditional mean and variance of step lengths with bed elevation; E[X\ YD = y].
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sample frequency histograms for the marginal rest 
periods are plotted in figure 16. The mean and variance 
of the marginal rest periods were computed by use of 
equation 41. These results are also presented in figure 
16. The range of the means is fairly small, only 0.610 to 
0.799 m. The mean dune lengths, as measured by the 
distance between trough points, for the three runs were 
1.19, 1.66, and 1.23 m respectively for runs 4A, 16, and 
17. The mean step lengths were, therefore, 54, 48, and 
49 percent of the mean dune lengths. Grigg (1969) 
found the mean step lengths of single tagged particles 
to be about 60 percent of the mean dune length. Of 
course, Grigg was working with a much finer sand, .33 
to .45 mm, as compared to 1.15 mm for this study. Also 
shown in figure 16 are gamma density functions for 
which the parameters k and r were determined from 
the mean and variance shown in the figure. The gamma 
functions appear to fit the data very well for all three 
runs. The value of the parameter r ranged from 4.05 for 
run 4A to 4.59 for run 17. This is slightly more than 
twice the value estimated by Yang (1968) from the step 
length distribution of a single plastic particle.

BED-MATERIAL TRANSPORT

The following assumptions and conditions were used 
to estimate the mean total bed-material transport rate 
by equations 55, 63, and 66: (1) Because the bed 
material was coarse sand (fig. 5), all sediment parades 
are assumed to be transported as bed load. Expressed 
mathematically, P[E^\ = 1. (2) y s(l - 6) = 1602 kg/m3 . 
(3) A^= QASy everywhere. By virtue of item 1, it follows 
that VT = VB , VT(J) = %(/), and QT = QB. In item 3, sy 
is the standard deviation of the bed elevation computed 
from the yx (t) record.

All parameters and statistics which are required by 
equations 55, 63, and 66 are summarized in tables 73 
and 74. The average depth of the zone of bed material 
movement, h, was determined by equation 59. It was 
found that one chart of the yt (x) record (about 34 m) is 
sufficient to obtain a reliable value of h, although over 
30 charts of the yt(x) record were used in this study. 
Each chart contained about ten dunes. Using equation 
62, £,, the percentage of volume between eleva­ 
tions 17/ and Tly+i occupied by dunes (hereafter 
will be referred to as the effective volume ra­ 
tio) was obtained from the yt(x) record. The results 
are presented in table 74 and plotted in figure 17. As 
shown in figure 17 ^ is nearly independent of flow con­ 
dition. As long as the bed forms are dunes, ^ does not 
change appreciably. It is also shown in figure 17 that £j 
is nearly unity and zero at jy, =   2.4 and jj = + 2.4, 
respectively. This is partial justification for the upper 
and lower limits of the elevations of erosion and deposi­ 
tion used in equations 94 and 95.

Another effective volume ratio can be obtained from 
the yx(0 record. Denoting this ratio by £,-,

m. 
J=Jr E'/. (105)

fc= 1

where
Lt = total length ofyx (t) record;
nij = maximum number of bed forms contained in

the yx (t) record which also contains some
deposition at elevation ^; and 

tj k = measurement of the conditional rest period.

There is no significant difference between £, and 
t,j (table 74) except for depths greater or less than 2.0 
standard deviations from the mean. The longitudinal 
profiles (yt(x) records) appear to contain a larger num­ 
ber of extreme events than the time record at a given 
point (the yx(i)). The explanation for this is probably 
that the flow was fairly stationary but that it was not 
longitudinally uniform.

A comparison of measured and computed total bed- 
material transport rates is shown in table 75. It is seen 
that:

1. For run 4A, all three equations provide excellent 
estimates to the observed mean total bed-material dis­ 
charges.

2. Equation 55 provided an excellent estimate to the 
mean total bed-material discharge for run 17. However, 
the other two equations overestimated the discharge by 
more than 25 percent. The reason for the differences in 
the equations is not understood.

3. None of the equations gave good estimates of the 
mean total bed-material discharge for run 16. The con­ 
sistently overestimated discharge ranged from 64 per­ 
cent for equation 63 to 80 percent for equation 55. It 
should be remembered, however, that the mean total 
bed-material discharge was less than 9 mg/L during 
this run, that the flow was not in equilibrium as illus­ 
trated by the large variation of energy slope (table 1), 
and that very few rest period statistics were available 
for analysis (fig. 8).

Taken as a whole, the results are very encouraging. 
Although equation 55 gave the most accurate results 
for run 17, it should be noted that equations 63 and 66 
gave very consistent results for all runs when they are 
compared one with the other. The discharge predicted 
by equation 66 was 8.3, 8.4, and 8.5 percent larger than 
that predicted by equation 63 for runs 4A, 16, and 17, 
respectively. Although equation 66 is probably simpler 
to evaluate than equation 63, it appears that some ac­ 
curacy has been sacrificed. The main difference be­ 
tween equations 63 and 66 is the way in which the 
effective depth or effective volume ratio (eq. 62, 71) is
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RUN 16

E^X] = 0.799m 

Vtr [X]= 0.140m 2

I 2 
STEP LENGTH, IN METERS

FIGURE 16. — Frequency histograms for the marginal step length with Gamma fits.
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TABLE 73. — Variation of various statistics with stream power

Run

4A

16

17

7 V
(d/cm-s)

3,110

1,450

2,900

E[X]
(m)

0.649

0.799

0.610

VarfX]
(m 2 )

0.104

0.140

0.081

E"[T]
(mm)

53.8

180.5

60.1

Var[T]
(min )

42,110

93,077

60,469

,", _ E[X]
T A1 E[T]
(cm/s)

0.0201

0.0073

0.0169

V<

(cm/s)

0.0378

0.0166

0.0372

h
(cm)

9.66

6.89

7.13

sy
(cm)

4.26

3.01

3.61

TABLE 74. — Comparison of the effective volume ratios at elevation yj; 
t,j, fromyt(x) record and£j, fromyx(t) record

'f,
-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

Run 4A

V
0.968

.963

.949

.925

.877

.791

.668

.512

.344

.189

.078

.015

.001

.000
_____

— _--

_____

0.903

.883

.865

.787

.675

.529

.379

.222

.112

.044

.009

Run 16

V V

1.000

.995

.975

.935

.865

.778

.670

.535

.385

.230

.103

.036

.012

.004

.001

———

—— —

0.890

.840

.719

.656

.567

.388

.230

.097

.037

.008

.001

Run 17

V

1.000

.998

.989

.964

.900

.801

.669

.522

.364

.202

.079

.020

.002

.000

.000

-----

———

———

0.943

.867

.756

.645

.522

.380

.234

.120

.046

.013

.001
-----

computed, and these functions were similar (table 74); 
therefore, the consistency of their final result was ex­ 
pected. Equation 55 had the lowest average absolute er­ 
ror for all three runs; however, equation 63 gave the 
most accurate result on two out of three runs. Because

of the similarity of equations 55 and 63, it would be 
difficult to say one was more accurate than the other. 
Their relative accuracy probably depends on chance oc­ 
currence of extreme events in one or the other records 
of bed elevation.

In table 75, $T is the mean total bed-material dis­ 
charge in weight per width and time, and it was ob­ 
tained by dividing equations 55, 63, and 66 by the width 
of the channel, W.

If we define q'B (j) as the mean bed-load discharge 
associated with elevation yj, then based on equation 63,

(n?.Ay. (106)

where $B(j) estimates q'B(j) and VB(j) is an estimate of 
the mean transport speed of a bed-load particle at 
elevation yj. The mean transport speed, VB(j), is given 
by equation 61 provided that the suspended load is 
negligible. With equation 106, the variation of bed-load 
discharge with bed elevation may be investigated. This 
variation is shown in figure 18 for all three runs. It is 
seen that the maximum bed-load discharge is associ­ 
ated with the mean bed elevation and that an insignifi­ 
cant portion of the bed-load movement appears to occur 
for 3^ -2.4 and ;y, 25 +2.4.

TABLE 75. — Comparison of measured and computed total bed-material transport rates

4A

16

17

4A

16

17

Measured total bed-material discharge (t/day-m)

Number of Maximum Minimum
measurements

54 5.30 0.91

32 0.72 0.18

32 3.04 0.59

Computed mean, q^, (t/daym)

Eq. 55 Eq. 63 Eq. 66

2.68 2.72 2.94

0.70 0.64 0.67

1.67 2.05 2.18

Computed

Eq. 55

0.970

1.801

1.035

Standard
deviation

0.88

0.14

0.59

mean /measured

Eq. 63

0.983

1.641

1.269

Mean

2.77

0.40

1.61

mean

Eq. 66

1.066

1.725

1.354
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< ocr

5 d 
o
UJ O

o
UJ O

Explanation 
O Run 4A 
A Run 16 
D Run 17

-3.2 -2.4 -1.6 -Q8 0.0 0.8 1.6 2.4 3.2 
STANDARDIZED ELEVATION, y.

FIGURE 17. — Effective volume ratio as a function of bed elevation, y,;

(0tr

UJ 
0. ^

I 3

UJ

z Q — o

UJ

i o 
o
<2 CVJ 

Q °

3 Q
Q °
UJ
00

Explanation 
O Run 4A 
& Run 16 
D Run 17

-3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 

STANDARDIZED ELEVATION, y.

3.2

FIGURE 18. — Variation of bed-load discharge with bed elevation.

VARIATION OF VARIOUS STATISTICS
WITH FLOW CONDITIONS AND A RELATION

BETWEEN THE STEP LENGTH
AND THE REST PERIODS

Although three flume runs are not sufficient to 
establish a reliable relation between the various 
statistics and flow conditions, some qualitative trends

can be determined from table 73. The stream power 
(product of mean bed shear stress and mean flow 
velocity) was used as a measure of the flow conditions. 
From table 73, it is seen that:

1. The mean transport speed of a bed-material parti­ 
cle ( VT, V'T), the average depth of the zone in which bed 
material movement occurs (h), and the standard devia­ 
tion of the bed (sy), appear to increase with increasing
stream power (r~b U).

2. The marginal mean of the step lengths (E [X\), the 
marginal variance of the step lengths^CVar [X\), the 
marginal mean of the rest periods (E[T]), and the 
marginal variance of the rest periods (Var[T]), appear 
to decrease with increasing stream power within the 
range of stream power investigated here.

The variation of the ratios of the conditional mean 
step length to the conditional mean rest period

( VB (y) = (£(X\ YD = y]) I (£[T\ YD = y})) 
and of the conditional variance of the step length to the 
conditional variance of the rest period

(Var [X\ YD = y] /Var[T\ YD = y}} 
with bed elevation, y, is shown in figures 19 and 20. 
From these figures it is seen that both ratios increase 
with increasing bed elevation.

TWO-DIMENSIONAL STOCHASTIC MODEL
FOR DISPERSION OF 

BED-MATERIAL SEDIMENT PARTICLES

A two-dimensional stochastic model for dispersion of 
bed-material sediment particles was derived earlier and 
was given by equation 85,

(85)

The one-dimensional model as a marginal case of equa­ 
tion 85 was

f(x;t) -
(n) / T

J /
dt<

Note that y is the standardized elevation. In order to ap­ 
ply equations 85 and 91, the probability density func­ 
tions,

fx(x), andfxlx) must be specified.
Although probability density functions for all these 

distributions have not been determined in this report, 
the measured probability mass functions have been 
presented in tables 2, 3-5, 8-10, and 66-68, respec-
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Explanation 
O Run 4A 

Run 16 
D Run 17

<>"Q

-3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 
STANDARDIZED ELEVATION, y

FIGURE 19. — Mean transport speed of a bed-load particle as a func­ 
tion of bed elevation, y.

o

Explanation 
O Run 4A 
A Run 16 
D Run 17

-3.2 -2.4
-0-6

-1.6 -0.8 0.0 Q8 1.6 2.4 

STANDARDIZED ELEVATION, y

FIGURE 20. — Ratio of the conditional variance of step lengths to the 
conditional variance of rest periods as a function of bed elevation.

lively. Equations for determining the /i-fold convolu­ 
tions of pT(t) andpx(x) can be obtained from equations 
82 and 79 with proper substitutions (Parzen, 1967). 
Further progress in the solution of either equation 85 or 
91 could proceed along either of two lines. First, all 
probability density functions could be replaced with the 
corresponding sample probability mass functions, the 
integrals approximated by summations, and the solu­ 
tions obtained numerically. Alternately, the mass func­ 
tions could be fitted by density functions of some 
assumed form and an analytical solution attempted. 
Lee (1973) used various fitting procedures to obtain all 
the probability density functions required to solve equa­ 
tion 85, but the integration of the equation appears 
quite formidable.

SUMMARY AND CONCLUSIONS

Stochastic models were developed which can be used 
to predict the transport and dispersion of bed-material 
sediment particles in an alluvial channel. These models 
are based on the proposition that the movement of bed- 
material sediment particles consists of a series of steps 
separated by rest periods and, therefore, their applica­ 
tion requires a knowledge of the probability distribu­ 
tions of the step lengths, the rest periods, and the eleva­ 
tion of particle deposition and erosion.

The probability distribution of the rest periods, condi­ 
tioned on the elevation of particle deposition and the 
probability distributions of the elevation of particle ero­ 
sion and deposition, were obtained from a record of the 
bed elevation at a fixed point as a continuous function 
of time \yx(t) record]. The necessary assumptions were: 
(1) Equilibrium flow; (2) both erosion and deposition do 
not occur at the same point during the same time 
period; and (3) the number of particles per unit volume 
of the bed is constant.

The probability distribution of the step lengths, con­ 
ditioned on the elevation of particle erosion and the 
elevation of particle deposition, was obtained from a 
series of instantaneous longitudinal bed profiles \yt(x) 
record]. The required assumptions were: (1) All bed- 
material sediment particles which are eroded from the 
upstream face of a dune will be deposited on the 
downstream side of the same dune; and (2) no deposi­ 
tion occurs on the upstream sides of dunes, and no ero­ 
sion occurs on the downstream faces of dunes. These 
assumptions appeared to be reasonable at least for a 
dune-covered bed composed of a coarse sand.

Introducing an additional assumption that the eleva­ 
tion of particle erosion and the elevation of particle 
deposition are mutually independent, various related 
probability distributions were obtained. These distribu­ 
tions included: (1) The marginal distributions of the 
rest periods and the.step lengths; (2) the joint distribu­ 
tion of the rest periods and the elevation of particle 
deposition; and (3) the joint distribution of the step 
lengths and the elevation of particle deposition.

A two-dimensional stochastic model for dispersion of 
bed-sediment particles was then derived (eq. 85). In 
order to apply the model, the probability distributions of 
(1) the step lengths given the elevation of particle 
deposition; (2) the rest periods given the elevation of 
particle deposition; and (3) the elevation of particle 
deposition, must be known. The mass functions of these 
distributions were estimated; however, the integrations 
required by the model remained unsolved.

Applying the concept of continuity, three bed- 
material transport models were presented. Application 
of these models requires the estimation of: (1) The con-
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ditional means of the rest periods and the step lengths; 
(2) the probability distribution of the elevation of 
deposition; (3) the average depth of the zone of bed- 
material movement; and (4) the effective volume ratio. 
These were all obtained from the yx(t) and yt(x) records. 
In the derivation of the models, the bed load was 
defined as that part of bed material which is deposited 
on the downstream face of the dune from which it is 
eroded, and the suspended load was defined as that part 
of bed material which passes two or more dune crests 
before being deposited. These definitions are very pre­ 
cise compared to the definitions prepared by the Task 
Committee on Preparation of Sedimentation Manual 
(1962).

Based on flume experiments with a coarse sand, the 
following conclusions were drawn:

1. The elevation of particle erosion and the elevation 
of particle deposition can be considered to be identically 
distributed, and their distribution can be approximated 
by either a truncated Gaussian density function or a 
symmetric triangular density function. In general, the 
truncated Gaussian density provides slightly better 
results; although the triangular density is much easier 
to handle analytically.

2. The conditional probability distribution of the rest 
periods, given the elevation of deposition, can be well 
described by the two-parameter gamma density func­ 
tion. The shape of the conditional density approaches a 
J -shape and becomes more peaked as bed elevation 
decreases.

A. Both the conditional mean and variance of the 
rest periods increase with decreasing bed eleva­ 
tion. These relations can be expressed by exponen­ 
tial functions.

B. Both the scale and shape parameters for the 
conditional distribution of the rest periods increase 
with increasing bed elevation, and they can be 
described by exponential functions of bed eleva­ 
tion.

C. The correlation coefficient between the rest 
periods and the elevation of deposition indicated 
that the rest periods and the elevation of deposition 
are negatively correlated, but the degree of their 
linear association is not strong.

3. The conditional probability distribution of the step 
lengths, given the elevation of deposition and the eleva­ 
tion of erosion, can be approximated by the two- 
parameter gamma distribution. The shape of the condi­ 
tional density is strongly dependent on the elevation of 
deposition and erosion.

A. For a fixed elevation of deposition, both the 
double conditional mean and variance of the step 
lengths increase with decreasing elevation of ero­

sion. In other words, longer step lengths are associ­ 
ated with lower elevation at which a sediment par­ 
ticle is eroded or deposited and vice versa.

B. The correlation coefficient between the step 
lengths and the elevation of deposition indicates 
that they are negatively correlated, but the degree 
of their linear association is not strong.

4. All three bed-material transport models are found 
to be quite satisfactory except for run 16.

A. The effective volume ratio can be obtained 
from either the yt(x) record or the yx(t) record, and 
it appears to be nearly independent of flow condi­ 
tion.

B. The maximum bed-load movement is associ­ 
ated with mean bed elevation, and little movement 
occurs for y ̂  —2.4 and y 5= +2.4.

5. The mean transport speed of a bed-material parti­ 
cle, the average depth of the zone of bed material move­ 
ment, and the standard deviation of bed elevation in­ 
creased with increasing stream power, whereas the 
marginal means and variances of the rest periods and 
the step lengths decreased with increasing stream 
power.

Figures 10 and 15 suggest that the step lengths and 
the rest periods are positively correlated in an average 
sense, but the degree of linear association was not 
strong.
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Table 2. Sample probability mass functions of elevations of deposition and erosion

Elevation 
"*

-3.6
-3.2
-2.8
-2.4
-2.0
-1.6
-1.2
-0.8
-0.4

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

7 m. or 7 m'. L i L t- 
i i

E[rD ] or E[jy

V^orvtrpy

Run 4A

*1D W \^

0.000
.000
.000
.006
.025
.060
.091
.125
.152
.160
.156
.120
.070
.025
.009
.001
.000

2,167

- .130

.813

0.000
.000
.000
.006
.032
.060
.088
.129
.140
.166
.154
.116
.068
.032
.009
.001
.000

2,167

- .133

.850

Run 16

Py Cj/^) Py (y^J)

0.000
.006
.007
.011
.019
.038
.062
.104
.122
.133
.197
.137
.097
.046
.016
.005
.000

134

.055

.999

0.000
.006
.007
.013
.025
.044
.065
.109
.116
.134
.189
.130
.097
.044
.016
.005
.000

134

.006

1.046

Run 17

*1D W \^

0.000
.000
.001
.005
.017
.044
.089
.129
.153
.154
.154
.117
.073
.041
.019
.004
.000

708

- .039

.863

0.000
.000
.002
.006
.017
.047
.089
.129
.148
.157
.153
.118
.072
.041
.017
.004
.000

708

- .043

.870

Triangular 
Density

———

0.004
.028
.Q56
.083
.111
.139
.158
.139
.111
.083
.056
.028
.004

———

Truncated 
Gaussian

-----
-----
———

0.006
.022
.046
.079
.118
.148
.162
.148
.118
.079
.046
.022
.006

———

m. is the total number of bed forms contained in the yx (£) record and which 
1 also contain some deposition in the class interval associated with the 

elevation y^.
m'. is the total number of bed forms contained in the yx (f) record and which 
1 also contain some erosion in the class interval associated with the 

elevation yj.
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Table 4. Sample conditional probability mass function of rest periods, p^iy (.t |j/0 (RunII

1

1

t

*
C

n
8
u
•o
M
•o

T3 

§
4-1

T

T

t

3?

C

a

a+1

a

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

a+1

a

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0

20

10

0

0

0

0

.2500

.1333

.1765

.1111

.4138

.2778

.5385

.2000

.5000

1.0000

0

220

240

230

0

0

0

0

0

.0666

0

0

.0345

0

0

0

0

0

0

20

40

30

0

0

0

0

0

.0667

.0588

.0556

.1034

.1667

0

.4000

.5000

0

0

240

260

250

0

0

0

0

0

6

.0588

.1111

0

0

0

0

0

0

0

40

60

50

0

0

0

0

0

.0667

0

.1111

.0690

.1111

.2308

.4000

0

0

0

260

300

280

0

0

0

0

.1250

.0666

.1176

.1111

0

0

0

0

0

0

0

60

80

70

0

0

0

0

0

0

.0588

.0556

.0345

.1111

0

0

0

0

0

300

400

350

0

0

0

.1667

0

.1333

.0588

0

0

0

0

0

0

0

0

80

100

90

0

0

0

0

0

0

.0588

.0556

.0345

.0556

.2308

0

0

0

0

400

500

450

0

0

0

0

.1250

.0667

.0588

0

0

0

0

0

0

0

0

100

120

110

0

0

0

0

0

.0667

.0588

.0556

.2069

.0556

0

0

0

0

0

500

600

550

0

0

0

0

0

.0667

0

.0555

0

0

0

0

0

0

0

120

140

130

0

0

0

0

0

.0667

.0588

.1111

.0345

.1666

0

0

0

0

0

600

700

650

0

0

0

.1667

0

.0667

.0588

0

0

0

0

0

0

0

0

140

160

150

0

0

0

.1667

.1250

.0667

.0588

.1111

0

0

0

0

0

0

0

700

800

750

0

0

0

.1667

.1250

0

0

0

0

0

0

0

0

0

0

160

180

170

0

0

0

0

0

0

.0588

.0555

.0345

.0556

0

0

0

0

0

800

1,300

1,050

0

0

0

.1666

.1250

0

0

0

0

0

0

0

0

0

0

180 200

200 220

190 210

0 0

0 0

0 0

0 0

0 0

0 .0666

0 .0588

0 0

.0345 0

0 0

0 0

0 0

0 0

0 0

0 0

1,300

1,800 m. .
-Z.,1

1,550

0 0

0 0

1.0000 2

.1666 6

.1250 8

0 15

0 17

0 18

0 29

0 18

0 13

0 5

0 2

0 1

0 0

, T ,. and t are in minutes. ' a+1 a
. is the total number of bed forms contained in the yx (t) record and which 

>l also contain both an up-crossing and a down-crossing at the elevation y,.
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Table 5. Sample conditional probability mass function of pest periods, p*,\ v C* lj/0 (Runj|i_ a t
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T

Ta+l
t a

-2.8
-2.4
-2.0

iri -1.6
c - 1 ' 2

•H -0.8
> -0.4
« 0.0

1 0-4
•g 0.8
•3 1.2
w 1.6

2.0
2.4
2.8

Ta
Ta+l
*a

-2.8
-2.4
-2.0

^ -1.6

1 ^
> -0.4
« 0.0-o 
« 0.4
•3 o.s
| 1.2
£ l - 6

2.0
2.4
2.8

0
10

5

0
0
0

.0322

.0328

.0652

.0385

.0789
.1892
.2625
.4286
.6250
.7273

1.0000
0

130
140
135

0
0

.1000

.0322

.0164

.0109
0
0
0
0
0
0
0
0
0

10
20
15

0
0
0

.0322

.0164

.0652

.1442

.2281

.3063

.3250

.2857

.2500

.2727
0
0

140
150
145

0
.3333

0
.0322

0
.0109

0
0
0
0
0
0
0
0
0

20
30
25

0
0
0

.0322

.1311

.1630

.2404

.2544

.2703

.2500

.1786

.1250
0
0
0

150
200
175

0
0
0

.0322

.0328

.0217
0
0
0
0
0
0
0
0
0

30
40
35

0
0
0

.1290

.0984

.1522

.2115

.2105

.1261

.0875

.0893
0
0
0
0

200
250
225

0
.3334

0
.1613
.0328

0
0
0
0
0
0
0
0
0
0

40
50
45

0
0

.1000

.0968

.1639

.1739

.1250

.1228

.0631

.0500

.0179
0
0
0
0

250
300
275

0
0

.1000

.0322
0

.0109

.0096
0
0
0
0
0
0
0
0

50
60
55

0
0

.1000

.0322

.0492

.1304

.1058

.0351

.0270

.0250
0
0
0
0
0

300
400
350

0
0
0

.0322

.0328

.0109
0
0
0
0
0
0
0
0
0

60
70
65

0
0
0
0

.1639

.0978

.0288

.0526

.0180
0
0
0
0
0
0

400
500
450

0
0

.1000

.0645

.0164
0
0
0
0
0
0
0
0
0
0

70
80
75

0
0
0

.0322

.0656

.0326

.0385
0
0
0
0
0
0
0
0

500
1,000

750

0
0

.1000

.0645

.0164
0
0
0
0
0
0
0
0
0
0

80
90
85

0
0
0
0

.0328

.0217

.0096
0
0
0
0
0
0
0
0

1,000
2,000
1,500

0
0

.1000
0
0
0
0
0
0
0
0
0
0
0
0

90
100

95

0
0
0

.0323

.0328
0

.0192

.0088
0
0
0
0
0
0
0

2,000
3,000
2,500

0
0

.1000
0
0
0
0
0
0
0
0
0
0
0
0

100 110 120
110 120 130
105 115 125

000
000
0 .1000 .1000

.0323 .0968 0

.0328 .0164 .0164

.0109 .0217 0

.0096 0 0

.0088 0 0
000
000
000
000
000
000
000

3,000
4,000 m. .
3,500

0 0
.3333 3

0 10
0 31
0 61
0 92
0 104
0 114
0 111
0 80
0 56
0 32
0 11
0 3
0 0

T ., and t are in minutes.

is the total number of bed forms contained in the yx (.t) record and which also contain 
both an up-crossing and a down-crossing at the elevation y..
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Table 6. Variation of conditional mean and variance of 
rest periods vith elevation of deposition;

and

Standardized 
Elevation

1

-2.8 
-2.4
-2.0
-1.6
-1.2
-0.8
-0.4

0.0
0.4
0.8
1.2
1.6
2.0

2 O

Er

Err

Run 4A

iv»<i.
Run 16

min

Run 17

1,400.8
252.2
120.5
83.4
58.2
40.2
27.4
21.0
16.7
13.9
11.4
8.5

—————

1,550.3
714.8
505.6
230.9
185.8
151.7
64.5
61.5
36.0
35.6
19.8

1,443.7
610.6
198.0
92.5
53.5
40.4
29.8
22.3
19.0
14.0
9.4
7.5

CT 0

2,167 134 708

Var[r|W , min2

Run 4A Run 16 Run 17

4,179,378
109,148
19,552
8,696
3,529
1,288

409
193
127

82
49
30

—————

84,679
204,840
246,658

39,416
28,686
16,715
4,030
2,691
1,039

351
2

4,671,616
762,079
74,793
14,193
2,548
1,129

316
188
145
107
50
18

2,167 134 708

Table 7. Estimates of parameters and the results of goodness of fit test fcr the 
conditional pest periods (two-parameter gamma)

! ,,..'•• b-r-l

Elevation

-0.4 

0.0 

0.4 

0.8

min" '

.031 

.067 

.109 

.131

Run

->,/'

583

1.255 

1.835 

2.276 

2.193

4A

m. . ^,^

314 

361 

338 

248

Goodness
°f 3/ 

Fit Test^7

x2 > x2
o

a

a 
x2 > x2

X2 <X2 

X XQ

a
X2 < X2

o

0

Run 16

k Goodness 
'^ r m. . of 

min" 1 "^ tr ' t" Fit Test

.006 1.204 17 x2 < x2 

.009 1.376 18 x2 < x2 

.016 1.031 29 x2 < x2 

.023 1.407 18 x2 < x2

min- 1

.036 

.094 

.118 

.131

Run

"*.„

1.444 

2.811 

2.638 

2.488 

1 827

17

m . .

104 

114 

111 

80

Goodness 
of 

Fit Test

r2 < x2x xo

x2 > x2
o

T2 > X2x xo

X2 >X2 

X2 < X2
o

T2 < X2x xo

X2 < X2 

T-2 < X2X X^

0

x2 = critical chi-square value at 
0 a significant level of 0.05
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Table 9. Sample joint probability mass function of rest periods and elevation of deposition,
pT.rJ*«>yf) (Run 16)

Ta
Ta+l
t a

-2.8
-2.4

-2.0

»" -1-6

g' -1.2

3 -0.8

£ -0.4

" 0.0•a
3 0.4

"2 0.8

| 1.2

« 1.6

2.0

2.4

2.8

MV

Ta

Vi
*a

-2.8

-2.4

-2.0

^ -1.6

e -1.2

w -0.8

£ -0.4

" 0.0

S 0.4

"2 0.8

| 1.2

« 1.6

2.0

2.4

2.8

Prcy

0

20

110

0

0

0

0

.0151

.0138

.0216

.0148

.0817

.0381

.0524

.0093

.0082

.0048

0

.2598

220

240

230

0

0

0

0

0

.0069

0

0

.0068

0

0

0

0

0

0

.0137

20

40

30

0

0

0

0

0

.0069

.0072

.0074

.0204

.0229

0

.0185

.0082

0

0

.0915

240

260

250

0

0
•0

0

0

0

.0072

.0148

0

0

0

0

0

0

0

.0220

40

60
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0

0

0

0

0

.0069

0

.0148

.0136

.0153

.0225

.0185

0

0

0

.0916
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0

0

0

0

.0075

.0069

.0144

.0148

0

0

0

0

0

0

0

.0436
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0

0

0

0

0

0

.0072

.0074

.0068

.0153

0

0

0

0

0

.0367
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0

0

0

.0063

0

.0138
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0

0

0

0

0

0

0

0
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0

0

0

0

0
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.0068

.0076
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0

0

0

0
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0
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0
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0

0
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0

0
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.0072

.0074

.0409
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0

0

0

0

0

.0700
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0

0

0

0

0
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0

.0074
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0

0

0
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0
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0

0

0

0
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0

0
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0
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0
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0

0
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0

0

0

0

.0141

, and £ are in minutes.
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Table 10. Siwiple joint probability noss function of rest periods and elevation of deposition,
PT.Y C^y) CRun 17)
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, and t are in minutes.



52 STOCHASTIC ANALYSIS OF PARTICLE MOVEMENT OVER A DUNE BED

E

£

1?

I
is
u

>

.,

VD

s

^

"I

in

"2

0

to
•i

C

r
t-

c

4 0

o r

rs

C

L/

C

c c c
It

c

0 T

"J C

r-

> 
>
> 
>

•

5 S
> C 
•> u

>

C
Cc
L

C

f c
•4 r

j f

I S
3 f 
t f

3 r-
3 M 
3 y 
0 V

3

3 \
M F

v0 C

i

:

i

Is f
" rO C

§ K !
3 W u

« C

R i

O

i

D rst c
H i-H C

r>

*
01
C

! I
4 r

3 t- 
3 f 
3 f 
1 H

3 f
1 E
O t

O *

3 C

r-* u

:

» 1i rt

3 1 C

! i 11
T * e
3 R I^ in •*

o r-* c
o ui c
T OO C 
O C4 *

t 0 "

3 0 C

rs

3 

4

3

§t

3 e
S 1
t c

!± 0

3 C

C

3

3 
J

H

o r
3 F

C

•4 vj

C

3 C
H r

O

•4 CM

O

O

Ul
i-i

g

5

o
8
C3

ca

^
a.

8 :

OOvocMi-^LnMO^H 

OCMO^OOOOO

r-I^HOOOOO^H^

O O O O O n

r-I^HOOOOO^H

rt rt o O

K g



SUPPLEMENTAL DATA TABLES 53

O O \D

O \D CTl

E

1?

s
D

>

r.

"

2

in

".

in

"I

in
o

•ri

-1

«« M ^«««.«0,-»JO«0

SS^^-oinw-H

III O O O 1 I I 
111 0 0 0 t I I

1 1 S 0 I I 0 0 > 
1 i O O I 1 O O 1

I 1 O II '

1 t-HOOOOOOOOOO

1 0

0 1

SssBsSSSissss
0

m ^^^ nnmvu)nnM
\ SSSm^oS^SSSS
1 0

SsSgSSsSsisini!
0 <->

i M II Iliilill i
1 1 1 0 '

1? r?7 r? rr7 <:? ci' 000 ~'~1 " <sl

1
1

0o

o
0

o o

o

-0

m

35

'S*

^

!X

<"
^f
c
3

•'-a
3J

•i^

&°

Q 
>1

^ ^

X:
a
^

«

1w

a

1"?

O \D

"4 -
O 1
Kj

C, " '*-»
« 31
0 Q
E >i
-g"

1 
A
g
iX

o§•£••§
§
wr^i

CO

in

1

!

£
i

13

^

i
Ws
r*

>.

"

"I
^

"I

in•

"2
"*

"2

"]

f-i

o

1

C
C
C 
C

r
t*

-4l/ltOOO\O(NOO(MvDOOOt>O^C
•~4(N^oor^Ln|*ovo

i : s s * : i :! ! ™ S S ' ! !
1 1 O O o 1 1 1

1 I O II 1

S 2 " ! S S S !
I*- CO i-H i O O O 1
0 001000 1

0 1 1

oSggSg&OgvCM -

(NOi-(OOOOOOOO I

O 1

Ot*-^J-CMr-4.-4in^-OO\OO '

fssSSssssis i
0 1

aoi-i-ioi'a-omt'ivmino
tO^I^OOOOMOMMO

3tN«MStNtNf3rtrtOoS

-4

§«"«RSSP!"o° !
SS^5«"««««S !
0 i

t l^^fl/lCOtOO*OO!O

1 Ort^tOM^-TTl^in

1 O

i : s R s s K s : §
1 1 O O O O O r-4 t (M

1 1 O 1

joo^o^rjoorro^oo^soc

11(1111

D C

3 ^

•I r

3

r
4

[

O 
0

l/l
0
o

in
o

0

M

1^

O
0

o

00

0

0
-^

CL

<fl

r̂t

1
4J 
O
O

•-<

o
rt
3
tr

01

j:
4^
M

§

(X

4->

}H
O
^

5•a
•H
3

y,̂
0

1
i>
o

0000000

O (N O ^T M \D «-4

O (N \D CM h*. \D

O (M O t- O

O O O O 1-1



54 STOCHASTIC ANALYSIS OF PARTICLE MOVEMENT OVER A DUNE BED

OOOO

O O O O M p-l

E

&
-

H

?.

S

Z
r-H 

U

S"

.^

vO

«

"J
'**'

"I

"J

n
ta1

c
c i/
c

c
E
L/

C

0
f

3 C

•) l/

3

3 C

3 C 
") it

>

J «

1 fv

oj in co to a

1 i

O O O 0

o

0 CO =0 vo f

rH O O O C

o

3 o r*- i/> so c

? £ 3 3 ™ r

j 10 co r^- so c

ff> M O O
o >-i r-j r-
o

1 ^t fM I/ 
1 r-t I-. U

1 r-t 0 C
1 O O C

1 O

I OJ rJ rH rH C

3 r-
4 0

3 a
3 C

3 «-

J i-

3 0 
J 1*r i*
f- r

3 It 
^ r-

J f

l a

? E

> Tl

) C

4 in r- 
j oj r

o 
o

r oo sc 
3 in f
H rH C
3 O C

* 0 C

J Ci st
•) c» T
r M o

1 t^. r-

i in sc

^ ov c
3 O -

r o T
) O C

- a 
g c

3 
T
3 
3

•J •-

3 C

3 U
^ -

1 C

H C

3 <c

r T
•) C
H T

r a
3 C

D t-1
4 r>

•* r-

3 C

"> sC -i t*

3 C

? 5
i» r
r i*

^ i/
-t L/
3 It
^ sc

3 r.
3 r-

1 -^ 
J

J

>

3 u 
1 t*

3 C

- O 
3 C

•> r
•> c
3 SC

sC

r

•> 
•>

3

3 E
j r-

- c 
•> c
1 I/
5 1"

3 C
•1 CV

3 
3•)
J

3
1
)

> ^

1 C*

r-
<i

i

o

o

o

3

2;
>
n.

SO sD sD *-* Tf

O O
O Oo in
so r-



SUPPLEMENTAL DATA TABLES 55

13 ?
s

O 00 O Oo o o PO

O O O O O O O •



56 STOCHASTIC ANALYSIS OF PARTICLE MOVEMENT OVER A DUNE BED

I r-4 O O O O

I.-HOOO O O «-l .-I <

o o o o ^ m
OOWOO fM C
O O M tO (N M I

o o 
o o

O I O O O O <

tO O O O O

000o o o 
o o in

E

+J

B

M

X

1u

F
>i

•rjv"

r~

.
<O

"]

in
*t

"?

"?

o

n
ki

c 
cc 
c

\c
K

-I r

3 C 
3 C
3 C 
3 C

-1 r-

0

) K

H C

Cc 
c
u

C

> c
3 C
3 C 
> u

oc
) fN

O i O 1 1 t

O 1 111

IS ?SS2
1 rH O O O OI .

11 is!§l
0

1»O^ lOtOOif^JrH OO

3

,^« SSSS' ««P
ISS «°?SS S"S

lf~ 0000^-^fCM -400K

!« "S5g| S°1
1 0

, , SS jHga

II O *-l W *O K

1 1 0

II 1 rH I 0 U

II 10 I 0 C

II 1 0 1

<*0 \OfMOO-frO -^COCS

fMfM i-Hi-HOOO OO.-I

D C
J r-

c
c 
c

c 
c
c

\c

3 ^ C

;

1

;
i
!

!

,i
1

;
I
1

, ,i
3 1

'

0 
0

> o
o
rf

I
(

1

O *d
(M CS

3 C

oe
Cs

3 C

r-
K

3 C

vC

) K

3

)

,
1

o
0

vO

0

O

^
f-<

00

t?

0

f-<

0o

•<•»
a

<n
K~i

^Q
"£T
Q.



SUPPLEMENTAL DATA TABLES 57

> 01 *0 xO I

. ^J Kl CNJ !

01 »-i r- o LO o i o

\O CNI 00 ^ O > •* O ^f oo CNJ \O O

> O O O O <-H rH CNI

£
-

H

1

a

2

I*.

•^

Ms

in

"!~

"j

r>
ta

I
'

I
1

1

1
1

\
1

8?
-"

,
J

!

!

•
1

1

1H N 10 rt Tt Tt E

III O 1 O 1 1 1 
III 0 1 0 1 1 1

III 01 II 1

, r-o .H^rsto-i ,

i O O OOOOO l
1 O 1

mcooi o*OK}r->o ^*
^H^H^H ^HrHOOO O

0

»O Kl 5t CN)CN)CN)»-«O OC

o

o

m^ M lor^ ^r^,

1 I O O O "* CN) M T

t 1 O

1 1 1 1 !-- CN) t-* h- \£ 
1 1 1 I CN) 00 r- tO K

1 1 1 1 O O O O r-

1 1 1 1 O

CO^O xOCNiOO^O •<*•«

III till

H 0 
1 r

) 
)

\ ^r-

r

c u

c
r
CN

CV

o r
-4

r j

J C

û-
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Tables?. Conditional means and variances of step lengths; £{X\XE -yi , ^D m Vj] and Var[Ar|jrg «y^, Xp'ti 4A)
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Note: Upper values are the means, in feet, and lower values are the variances, in feet squared.
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Table 58. Conditional means and variances of step lengths; E[J?|y-,»«., *„•«.] and V*r[X\!-, =w.. *„=«.] (Run 16)
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.276

.084

2.516

1.252

2.4

.....

- ——

———

.....

4.430 
.858

3.952 
.842

3.580 
.507

3.129 
.483

2.657 
.502

2.421 
.424

2.116 
.358

1.788 
.312

.183

.096

2.550

1.409

2.8

.....

—— -

———

———

4.379

3.243 
.904

2.933 
.824

2.698 
.733

2.459 
.611

2.219 
.433

1.999
.337

1.769 
.308

.139

.017

2.308

1.164

3.2

.....

-----

.....

.....

———

2.391

2.112

1.913

1.726

1.574

1.409

1.197 

998"

1.495

.368

Note: Upper values are the means, in feet, and lower values are the variances, in feet squared.
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Table 59. Conditional means and variances of step lengths; l[X\XE *y., J-'y.] and VarfATJ I^-y^, YJ) =y,] (Run 17)

^SQ
-3.2

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

iWv^]
varWv ,.]

-3.2 -2.8 -2.4

—— . ——— —— --

..... ..... .....

——— ——— ———

——— ——— 3.655 
——— ——— .456

——— ——— 3.066 
——— ——— 1.202

——— ——— 2.656 
——— ——— 1.053

——— ——— 2.516 
——— -- —— .833

——— 3.396 2.878 
——— ——— .223

——— 2.110 2.131 
——— .965 .344

——— 1.108 1.636 
——— ——— .439

-- —— ——— 1.817

——— ——— 1.226

-—— --—— ---

..... ..... .....

——— .989 2.311

——— 1.815 1.104

-2.0

— ——

3.984

4.118 
.395

3.693 
.320

3.369 
.700

3.013 
.935

2.772 
.664

2.523 
.563

2.123 
.457

1.888 
.238

1.584 
.090

1.285 
.106

—— -

.....

2.473

1.069

-1.6

— ——

3.909

3.699 
.335

3.686 
.824

3.408 
.632

3.017 
.733

2.709 
.613

2.379 
.522

2.091 
.370

1.846
.237

1.621 
.220

1.520 
.248

.....

2.440

1.010

-1.2

———

4.026 
1.057

3.441 
.725

3.471 
.751

3.117 
.611

2.790 
.638

2.461 
.583

2.153 
.496

1.896 
.360

1.696 
.245

1.526 
.253

1.540 
.2§4

1.557 
.060

.....

2.271

.845

-0.8

4.657

3.773 
.427

3.319 
.575

3.320 
.623

3.008 
.629

2.662 
.681

2.354 
.616

2.041 
.516

1.763 
.398

1.573 
.289

1.400 
.245

1.289 
.155

1.366 
.053

.....

2.153

.861

-0.4

3.553

3.354 
.407

3.285 
.596

3.210 
.565

2.922 
.589

2.574 
.610

2.232 
.608

1.934 
.522

1.652 
.405

1.464 
.279

1.280 
.248

1.190 
.183

1.088 
.108

- ——

2.042

.849

0.0

3.157

3.188 
.414

3.104 
.546

3.076 
.546

2.818 
.552

2.499 
.530

2.141 
.529

1.792 
.502

1.513 
.382

1.332 
.257

1.146 
.214

1.038 
.174

.948 

.150

.941

1.925

.811

0.4

2.792

3.191 
.504

3.051 
.531

3.056 
.475

2.816
.477

2.476 
' .452

2.129 
.445

1.765 
.435

1.377 
.403

1.219 
.256

1.048 
.210

.945 

.168

.866

.148

.796

1.866

.818

0.8

2.663

3.048 
.608

3.000 
.542

2.983 
.421

2.769 
.453

2.465 
.408

2.151 
.383

1.814 
.351

1.421 
.318

1.069 
.272

.941 

.203

.841 

.161

.793 

.147

.682

1.841

.797

1.2

3.206 
.491

3.030 
.456

2.932 
.327

2.704 
.411

2.441 
.342

2.187 
.354

1.877 
.312

1.521 
.260

1.135 
.241

.786 

.212

.725 

.157

.714 

.139

.577

1.847

.762

1.6

-----

3.580 
.365

3.223 
.360

2.979 
.208

2.707 
.416

2.411 
.330

2.219 
.407

1.942 
.358

1.625 
.288

1.291
.247

.891 

.202

.545 

.161

.629 

.123

.494

1.899

.765

2.0

———

3.308 
.340

2.868 
.245

2.633
.247

2.515 
.706

2.259 
.391

1.998
.287

1.798 
.220

1.527 
.181

1.396 
.182

.984 

.147

.639

.133

.494 

.102

.411

1.777

.606

2.4 2.8

——— ———

::::: :::::
—— ——

—— ——

— .- —---
-— .....

-. — — ..
— - .....

1.624 — ——

1.234 —— —

.967 —— —

.753 —— —

.546 —— —

.328 -----

.506 —— —

.424 —— -

Note: Upper values are the means, in feet, and lower values are the variances, in feet squared.
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Table 60. Estimates of parameters describing too-parameter garma distribution for conditional step lengths (Run 4A)

67

\, rD-»j
V"i\

-3.2

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

-3.2 -2.8 -2.4

————— ———— 2.391

-2.0

2.098

-1.6

1.932

-1.2

2.309

-0.8

2.572

-0.4

7 787

2.530

0.0

2.616

0.4

2.693

0.8

2.709

1.2

3.390

1.6

3.905

2.0 2.4 2.8

1.654 —— —— —— ---

Note: Upper values are k , and lower values are r
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Table 61. Estimates of parameters describing two-parameter gonna distribution for conditional step lengths (Run 16)

^\y^- 
vv\

-3.6

-3.2

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

-3.6 -3.2 -2.8

::::: ::::: :::::::
——— ——— 135.437 
——— ——— 586.986

——— ——— 62.463 
——— ——— 216.406

——— ——— 2.394 
——— ——— 11.129

——— ——— 3.142 
——— ——— 13.795

—— - ——— 3.690 
——— ——— 14.462

——— 1.207 2.925 
——— 5.300 11.182

——— 1.761 3.532 
——— 6.695 11.954

——— 2.048 3.364 
—— -- 6.704 9,732

——— 1.671 3.265 
——— 4.752 7.879

——— ——— 6.718 
——— ——— 9.614

—— -- - —— - —— —— -

——— ——— —— ——

----- ----- -------

-2.4

::::::
9.454 

41.739

8.215 
36.777

3.328 
15,462

4.194 
18.928

4.803 
19.308

2.939 
10.678

2.817 
8.665

3.918 
10.685

4.022 
9.320

3.439 
7.109

------

------

-2.0

5.681 
21.885

4.295 
19.532

5.714 
26.418

4.132 
18.339

4.138 
17.772

4.034 
15.977

3.256 
11.749

3.070 
9.617

3.757 
10.403

3.815 
8.716

4.970 
10.570

13.908 
25.145

————

-1.6

4.261 
19.393

4.711 
21.727

6.087 
28.158

4.384 
19.832

3.956 
16.890

3.601 
13.964

3.221 
11.089

2.849 
8.460

3.613 
9.727

3.892 
8.951

4.279 
8.805

5.723 
10.188

11.319 
20.498

------

-1.2

3.772 
16.773

4.291 
19.827

6.458 
29.150

4.693 
20.503

4.284 
17.622

3.294 
12.275

2.938 
9.679

2.773 
7.907

3.435 
8.790

3.509
7.744

3.730 
7.334

4.523 
7.630

5.784 
9.938

------

-0.8

4.616 
19.817

4.254 
19.060

5.900 
26.179

4.555 
19.708

4.400 
17.771

3.302 
11.992

2.831 
9.026

2.675 
7.305

3.206 
7.814

3.410
7.175

3.616 
6.667

4.388 
7.144

7.319 
12.266

19.639 
27.769

-0.4

4.978 
20.620

4.359 
19.017

4.866 
21.406

3.993 
17.016

4.031 
15.889

3.284 
11.667

2.722 
8.382

2.492 
6.523

3.063 
7.095

3.414 
6.784

3.660 
6.270

4.330 
6.413

6.227 
9.384

------

0.0

4.639 
18.683

4.853 
20.464

5.661 
23.906

4.276 
17.424

4.299 
16.263

3.359 
11.416

2.772 
8.140

2.370 
5.797

2.940 
6.336

3.308 
6.107

3.682 
5.884

4.134 
5.726

6.116 
8.679

14.600 
17.053

0.4

3.661 
14.032

4.555 
18.507

5.608 
22.900

4.802 
19.117

4.938 
18.243

4.029 
13.521

3.368 
9.859

2.862 
6.973

2.563 
5.030

3.118 
5.357

3.508 
5.255

3.837 
4.977

5.776 
7.740

12.857 
13.886

0.8

3.760 
13.897

4.227 
16.702

5.490 
21.582

4.853 
18.607

5.052 
17.997

4.198 
13.799

3.828 
11.166

3.441 
8.455

2.904 
5.691

2.482 
3.770

3.385 
4.699

3.574 
4.342

5.423 
6.882

12.217 
12.387

1.2

6.684 
25.600

4.637 
18.126

6.116
24.537

5.439 
21.686

5.435 
20.028

4.651 
16.156

4.683 
14.386

4.509 
1 1 . 896

4.213 
9.159

3.622 
6.099

2.824 
3.319

3.276 
3.650

5.164 
6.186

11.434 
10.851

1.6

-----

18.045 
64.800

6.211 
23.920

5.547 
20.464

5.716 
19.897

5.946 
18.529

5.788 
15.477

5.504 
12.449

4.970 
9.065

3.891 
5.284

2.470 
2.336

4.679 
5.189

10.590 
9.309

2.0

::::::
-----

14.018 
43.820

3.281 
12.521

3.322 
11.853

4.189 
14.742

5.154 
16.019

4.421 
11.416

4.610 
10.586

4.222 
8.183

3.566 
5.506

3.064 
3.662

3.478 
3.339

9.548 
7.657

2.4

::::::
———

5.163 
22.873

4.694 
18.549

7.061 
25.279

6.478 
20.270

5.293 
14.063

5.710 
13.824

5.911 
12.507

5.731 
10.247

5.706 
8.206

5.760 
6.070

7.000 
4.704

2.8

::::::
-----

———

3.587 
11.634

3.559 
10.440

3.681 
9.931

4.024 
9.896

5.125 
11.372

5.932 
11.858

5.744 
10.160

6.780 
10.252

9.043 
11.367

"---

3.2

:::::

— -

——

——

-—-

-----

——
— -

-----

Note: Upper values are fc , and lower values are z^ , .
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Table 62. Estimates of parameters describing toe-parameter gamma distribution for conditional step lengths (Run 17)
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\V";v»i\
-3.2

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

-3.2 -2.8 -2.4 -2.0

...... ......

——— ——— —— —— 10.425 
——— ——— —— —— 42.931

——— ——— 8.015 11.541

——— ——— 2.551 4.813 
——— ——— 7.820 16.214

——— ----- 2.522 3.222 
——— ——— 6.699 9.709

——— —— -- 3.020 4.175 
——— ——— 7.599 11.572

——— ----- 12.906 4.481

——— 2.186 6.195 4.646 
——— 4.614 13.201 9.862

——— ——— 3.727 7.933 
——— ——— 6.097 14.977

——— ——— ———— 17.600 
----- -. —— ------ 27.878

——— ——— ———— 12.123 
- —— ——— ———— 15.578

——— .- —— ------ —— ——

-1.6

::::::
11.042 
40.844

4.473

5.392 
18.377

4.116 
12.418

4.419 
11.972

4. 557

5.651 
11.817

7.789 
14.379

7.368 
11.944

6.129 
9.316

————

-1.2

3.809 
15.335

4.746 
16.332

4.622

5.101 
15.901

4.373 
12.201

4.221 
10.388

4.341

5.267 
9.986

6.922 
11.740

6.032 
9.204

6.063 
9.337

------

-0.8

8.836 
33.338

5.772 
19.158

5.329

4.782 
14.385

3.909 
10.406

3.821 
8.996

3.955

4.430 
7.809

5.443 
8.562

5.714 
8.000

8.316 
10.719

-0.4

8.241 
27.640

5.512 
18.106

5.681

4.961 
14.496

4.220 
10.861

3.671 
8.194

3.705

4.079 
6.739

5.247 
7.682

5.161 
6.606

6.503 
7.738

10.074 
10.960

0.0

7.700 
24.594

5.685 
17.646

5.634

5.105 
14.386

4.715 
11.783

4.047 
8.665

3.570

3.961 
5.993

5.183 
6.904

5.355 
6.137

5.966 
6.192

6.320 
5.991

0.4

6.331 
20.203

5.746 
17.530

6.434

5.904 
16.624

5.478 
13.563

4.784 
10.186

4.057

3.417 
4.705

4.762 
5.805

4.990 
5.230

5.625 
5.316

5.851 
5.067

0.8

5.013 
15.280

5.535 
16.605

7.086

6.113 
16.926

6.042 
14.893

5.616 
12.080

5.168

4.468 
6.350

3.930 
4.201

4.635 
4.362

5.224 
4.393

5.394 
4.278

1.2

6.530 
20.934

6.645 
20.134

8.966

6.579 
17.790

7.137 
17.422

6.178 
13.511

6.016

5.850 
8.898

4.710 
5.345

3.708 
2.914

4.618 
3.348

5.137 
3.668

1.6

9.808 
35.113

8.953 
28.855

14.322

6.507 
17.615

7.306 
17.615

5.452 
12.098

5.425

5.642 
9.169

5.227 
6.748

4.411 
4.327

3.385 
1.845

5.114 
3.216

2.0 2.4

9.729 ——— 
32.185 ———

11.706 —— -- 
33.573 ———

10.660 ———

3.562 ----- 
8.959 ———

5.777 ——— 
13.051 ———

6.962 ——— 
13.909 ———

8.173 ———

8.436 ——— 
12.882 ———

7.121 ——— 
9.229 ———

6.694 ——— 
6.587 -----

4.804 ——— 
3.070 —— --

4.843 —— -- 
2.392 ———

2.8

:::::
——
-—

:::::

.....

.....

.....

-----

- — -

——
-----

Note: Upper values are k , and lower values are r
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Table 63. Results of goodness of fit test for conditional step lengths (Run 4A)

YD^J

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

fcl y v ,y
ft- 1

2.449

2.317

2.430

2.824

3.291

3.671

3.958

4.151

3.830

V»* =

r i,y,y'~

6.822

5.147

6.276

7-074

8.221

9.202

9.761

10.390

9.811

-0.8

m . .

128

217

336

423

457

420

307

181

48

Goodness
° f 3/

x2 < x2 
e

x 2 < ^

X2 < X2c
X2 <X 2

X2 < X 2a
X 2 < X2a
X2 < X2

a
x 2 < x 2

x 2 < x2 
c

k
ft- 1

2.127

2.049

2.193

2.259

2.210

2.767

3.298

3.701

3.854

V»t =

r ,

4.837

4.551

4.567

4.357

3.972

5.100

6.319

7.424

8.020

0.0

"V ,-

146

263

440

603

725

666

468

253

56

Goodness
of

x2 < x2 
o

X2 < X2
a

X 2 < X 2

X2 <X2

X2 < X 2
a

x2 < x2

x2 < x2

x2 < x2 
a

r2 < r2x < xc

k
ft- 1

1.932

2.309

2.257

2.530

2.616

2.693

2.709

3.390

3.905

r , m. .

4.073 60

4.464 124

4.566 213

4.048 306

3.765 403

3.517 455

3.053 470

4.217 284

5.443 67

Goodness
of

X 2 < X2

X 2 < X 2a
T2 < r2 x xo
x2 < X2 

a
x2 < x2

X2 < X 2c
X2 < X2a
X 2 <X 2

X2 <X2

=y, J=y'] Var[*|y =y, I
x2 = critical chi-square value 

at a significant level of 
0.05

Table 64. Results of goodness of fit test for conditional step lengths (Run 16)

1 •»•!/' 
ft' 1

-1.6 3.601

-1.2 3.294

-0.8 3.302

-0.4 3.284

0.0 3.359

0.4 4.029

0.8 4.198

1.2 4.651

1.6 5.716

'M,*-'

13.964

12.275

11.992

11.667

11.416

13.521

13.799

16.156

19.897

"i,J

155

239

293

341

365

337

272

146

52

Goodness 

Fit Test-7

X2 <X2

X2 < X2
c

X2 < X2

X 2 < X2
a

x2 < x2
Q

X2 < X2
o

X2 < X2

X2 < X2
a

x2 < x2 
a

k , Goodness k , Goodness'y*y f , m, . of *y y y •? , m. . of
ft -l l.y.y T-.3 pit Test ft- 1 ^y-y l ' i> Fit Test

2.849 8.460 184 x2 < x2 3.892 8.951 124 x2 < x2

2.773 7.907 294 x2 < x2 3.509 7.744 200 x2 < X2

2.675 7.305 376 x2 < x2 3.410 7.175 254 x2 < x2

2.492 6.523 442 x2 < x2 3.414 6.784 297 x2 < X2

2.370 5.797 482 x2 < x2 3.308 6.107 317 x2 < x2

2.363 6.973 444 x2 < x2 3.118 5.357 325 x2 < x2 a o

3.441 8.455 350 x2 < x2 2.482 3.770 331 x2 < X2

4.509 11.896 197 x2 < x2 3.622 6.099 207 x2 < X2

5.788 15.477 77 x2 < x2 4.970 9.065 83 x2 < x2

(t[x\YE-y, yfl
Y=y']

x2 = critical chi-square value 
0 at a significant level of 

0.05

Table 65. Results of goodness of fit test for conditional step lengths (Run 17)

V*,

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

v»t • -°- 8
l.y>y' 
ff 1

4.116

4.373

3.909

4.220

4.715

5.478

6.042

7.137

7.306

^y.y-

12.418

12.201

10.406

10.861

11.783

13.563

14.893

17.422

17.615

mi,o

109

259

406

487

502

449

324

155

53

Goodness
°f 3/ Fit Test-'

x2 < x2

x2 > x2 
a

x2 > x2 
a

x2 < x2

X 2 < X2
c

~2 < ~2 X XQ̂

X 2 < X2a
X 2 < X2o
X2 < X2

Yfy. - 0.0

fc l ' 
ff 1

4.557

4.341

3.955

3.705

3.570

4.057

5.168

6.016

5.425

r , m . .

10.842 129

9.346 301

8.073 493

7.165 632

6.397 704

7.161 647

9.375 469

11.292 235

10.535 80

Goodness 
of 

Fit Test

x2 > x2

x2 < x2 
o

X2 < X2c
X2 < X2

c
X 2 > X2

o
X2 > X2 

0

X 2 < X 2o
X2 < X2

c
X 2 < X2a

k \ ' 
ft- 1

7.789

6.922

5.443

5.247

5.183

4.762

3.930

4.710

5.227

'sTi •

r ,

14.379

11.740

8.562

7.682

6.904

5.805

4.201

5.345

6.748

0.8

mi,3

68

159

267

357

411

425

427

247

85

Goodness 
of 

Fit Test

x2 < x2
Q

X2 < X2c
x2 < x2

X2 <X2

X2 < X2

x2 < x2

X 2 <X2

X2 < X2c
X2 < X2c

r2 = critical chi-square value 
c at a significant level of 

0.05
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